scholarly journals Boundary line analysis of the effect of water-filled pore space on nitrous oxide emission from cores of arable soil

2016 ◽  
Vol 67 (2) ◽  
pp. 148-159 ◽  
Author(s):  
R. M. Lark ◽  
A. E. Milne
1997 ◽  
Vol 77 (2) ◽  
pp. 145-152 ◽  
Author(s):  
A. F. MacKenzie ◽  
M. X. Fan ◽  
F. Cadrin

Nitrous oxide (N2O) produced from agricultural activities represents a threat to the ozone layer and economic losses. Rates and magnitudes of N2O emissions of cropping systems must be determined to establish corrective management procedures. In 1994, N2O emissions were determined with corn (ZeaMays L.) and corn-legume rotations. Continuous corn was studied on four soils, two from a long-term experiment, a Ste. Rosalie heavy clay (Humic Gleysol) and a Chicot sandy loam (Grey-Brown Podzol), at 0, 170, 285 or 400 kg N ha−1, and two from a corn rotation study, a Ste. Rosalie clay (Humic Gleysol) and an Ormstown silty clay loam (Humic Gleysol). Treatments included no-till (NT) and conventional tillage (CT), monoculture corn (CCCC), monoculture soybean; corn-soybean; and soybean-corn-alfalfa phased rotations. Nitrogen rates of 0, 90, or 180 kg N ha−1 for corn and 0, 20, or 40 kg N ha−1 for continuous soybean were used, and soybean/alfalfa following corn no fertilizer N. Rates of N2O emission were measured from closed chambers through the growing season. About 0.99 to 2.1% of N added was lost as N2O. Nitrous oxide emission increased with increased soil water content, NO3 concentration and fertilizer N rates. Emission of N2O was higher with NT than with CT, and with corn than with soybean or alfalfa. A corn system using CT, legumes in rotation and moderate fertilizer N would reduce N2O emission. Key words: Greenhouse gases, soil nitrate, tillage methods, water-filled pore space, denitrification, rotations


2004 ◽  
Vol 8 (4) ◽  
pp. 686-694 ◽  
Author(s):  
S. E. Machefert ◽  
N. B. Dise

Abstract. Nitrous oxide fluxes and denitrification rates were measured in situ over a year at a riparian site in the UK. An exponential relationship was found between denitrification rates and soil moisture, with a sharp increase in denitrification rate at a water-filled pore space of 60–80%. Similar relationships were found in other studies compiled for comparison. The present study is unique in measuring denitrification in an "intact" ecosystem in the field, rather than in cores in the field or the lab. The exponential relationship between denitrification rate and soil moisture, with a "threshold" at 60–80% water-filled pore space (20–40% gravimetric moisture), has proven to be comparable across a wide range of ecosystems, treatments and study conditions. Whereas moisture content determines the potential for denitrification, the absolute rate of denitrification is determined by available nitrate (NO3-), dissolved organic carbon and temperature. As a first approximation, denitrification rates can be simply modelled by using a general exponential relationship between denitrification potential and water-filled pore space (or volumetric/gravimetric water content) multiplied by a constant value determined by the nitrogen status of the site. As such, it is recommended that the current relationship used in INCA to relate denitrification to soil moisture be amended to an exponential form, with a threshold of approximately 70% for the onset of denitrification. Keywords: nitrous oxide, denitrification, soil moisture, nitrogen, eutrophication, riparian


Geoderma ◽  
2021 ◽  
Vol 389 ◽  
pp. 114970
Author(s):  
Wenzhao Zhang ◽  
Hanchang Zhou ◽  
Rong Sheng ◽  
Hongling Qin ◽  
Haijun Hou ◽  
...  

2019 ◽  
Vol 10 (4) ◽  
pp. 325-332
Author(s):  
Eunjung Choi ◽  
Gunyeob Kim ◽  
Sun il Lee ◽  
Hyuncheol Jeong ◽  
Jongsik Lee ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document