denitrification rate
Recently Published Documents


TOTAL DOCUMENTS

110
(FIVE YEARS 26)

H-INDEX

19
(FIVE YEARS 3)

2021 ◽  
Author(s):  
Li Zhaolei ◽  
Ze Tang ◽  
Zhaopeng Song ◽  
Weinan Chen ◽  
Dashuan Tian ◽  
...  

Water ◽  
2021 ◽  
Vol 13 (23) ◽  
pp. 3323
Author(s):  
Yangfang Gao ◽  
Mingming Wang ◽  
Jun Wei ◽  
Lingwei Kong ◽  
Hui Xu ◽  
...  

Denitrification of sediments is an important way to remove reactive nitrogen in lakeshore zones. In this work, we analyzed sediment denitrification patterns across the shore zone of Lake Taihu and explored their underlying mechanisms using flooding simulation experiments. The results showed that denitrification mainly occurred in the upper sediment layer (0–10 cm) and the denitrification rate was highest at the land–water interface (6.2 mg N/m2h), where there was a frequent rise and fall in the water level. Denitrification was weaker in the lakebed sediments (4.6 mg N/m2h), which were inundated long-term, and in the sediments of the near-shore zone (2.3 mg N/m2h), which were dried out for extended periods. Flooding simulation experiments further indicated a strong positive relationship between sediment denitrification rate and flooding frequency. When the flooding occurred once every 3, 6, 9, 12, or 15 days, the denitrification rate reached 7.6, 5.7, 2.8, 0.9, and 0.6 mg N/m2h, respectively. Frequent flooding caused alternating anoxic and aerobic conditions in sediments, accelerating nitrogen substrate supply and promoting the growth and activity of denitrifying bacteria. Based on these findings, we propose a possible strategy for enhancing sediment denitrification by manipulating the water level, which can help guide nitrogen removal in lakeshore zones.


2021 ◽  
Vol 9 (11) ◽  
pp. 2202
Author(s):  
Weibo Wang ◽  
Xu Wang ◽  
Xiao Shu ◽  
Baoru Wang ◽  
Hongran Li ◽  
...  

Sediment particle size and heterogeneity play an important role in sediment denitrification through direct and indirect effects on, for example, the material exchange rate, environmental gradients, microbial biomass, and grazing pressure. However, these effects have mostly been observed in impermeable sediments. On the other hand, the material exchange of permeable sediments is dominated by advection instead of diffusion, with the exchange or transport rates exceeding those of diffusion by two orders of magnitude relative to impermeable sediments. The impact of permeable sediment particle size and heterogeneity on denitrification remains poorly understood, especially at the millimeter scale. Here, we conducted an in situ control experiment in which we sorted sand sediment into four homogeneous-particle-sizes treatments and four heterogeneous treatments. Each treatment was deployed, in replicate, within the riffle in three different river reaches with contrasting physicochemical characteristics. After incubating for three months, sediment denitrifier communities (nirS, nirK, nosZ), denitrification gene abundances (nirS, nirK, nosZ), and denitrification rates in all treatments were measured. We found that most of the denitrifying microbes in permeable sediments were unclassified denitrifying microbes, and particle size and heterogeneity were not significantly correlated with the functional gene abundances or denitrification rates. Water chemistry was the key controlling factor for the denitrification of permeable sediments. Water NO3−-N directly regulated the denitrification rate of permeable sediments, instead of indirectly regulating the denitrification rate of sediments by affecting the chemical characteristics of the sediments. Our study fills a knowledge gap of denitrification in permeable sediment in a headwater river and highlights that particle size and heterogeneity are less important for permeable sediment denitrification.


2021 ◽  
Author(s):  
Yongchun Pan ◽  
Dongli She ◽  
Zhenqi Shi ◽  
Xinyi Chen ◽  
Yongqiu Xia

Abstract Salt-affected soils have poor structure and physicochemical properties, which affect soil nitrogen cycling process closely related to the environment, such as denitrification and ammonia volatilization. Biochar and polyacrylamide (PAM) have been widely used as soil amendments to improve soil physicochemical properties. However, how they affect denitrification and ammonia volatilization in saline soils is unclear. In this study, the denitrification and ammonia volatilization rates were measured in a saline soil field ameliorated with three biochar application rates (0%, 2% and 5%, w/w) and three PAM application rates (0‰, 0.4‰ and 1‰, w/w) over three years. The results showed that denitrification rates decreased by 23.63%-39.60% with biochar application, whereas ammonia volatilization rates increased by 9.82%-25.58%. The denitrification and ammonia volatilization rates decreased by 9.87%-29.08% and 11.39%-19.42% respectively, following PAM addition. However, there was no significant synergistic effect of biochar and PAM amendments on the denitrification and ammonia volatilization rates. The addition of biochar mainly reduced the denitrification rate by regulating the dissolved oxygen and electrical conductivity of overlying water and absorbing soil nitrate nitrogen. Meanwhile, biochar application increased pH and stimulated the transfer of NH4+-N from soil to overlying water, thus increasing NH3 volatilization rates. Hence, there was a tradeoff between denitrification and NH3 volatilization in the saline soils induced by biochar application. PAM reduced the denitrification rate by increasing the infiltration inorganic nitrogen and slowing the conversion of ammonium to nitrate. Moreover, PAM reduced the concentration of NH4+-N in the overlying water through absorbing soil ammonium and inhibiting urea hydrolysis, thereby decreasing NH3 volatilization rate.


2021 ◽  
Author(s):  
Tam Nguyen ◽  
Fanny Sarrazin ◽  
Stefanie R. Lutz ◽  
Rohini Kumar ◽  
Andreas Musolff ◽  
...  

<p>StorAge Selection (SAS) functions describe how a catchment selectively removes water and solute of different ages via discharge, thus controlling transit time distributions (TTDs) and solute composition of discharge. Previous studies have successfully applied SAS functions in a spatially lumped approach to capture catchment-scale transport phenomena of (non-)conservative solutes. The lumped approach assumes that water and solutes within a water parcel of a specific age are well-mixed. While this assumption does not cause any changes in the age of water, the spatial heterogeneity of solute concentrations within this water parcel is lost. In addition, in large catchments, headwater sub-catchments and lowland sub-catchments could behave in different ways, e.g., the transit times (TTs) and reaction rates between headwater and lowland sub-catchment could be of different magnitudes. This, in turn, might not be sufficiently represented in a lumped approach of SAS functions.</p><p>In this study, we applied the mHM-SAS model (Nguyen et al., 2020) with a semi-distributed approach of SAS functions. The nested mesoscale catchment (Selke catchment, Germany) with heterogeneous land use management practices, TTs, and subsurface reactivity was used as a case study. In addition to spatial variability, a functional relationship between the parameters of the SAS functions and storage dynamics was introduced to capture temporal dynamics of the selection preference for discharge. High frequency instream nitrate data were used to validate the proposed approach. Results show that the proposed approach can well represent nitrate export at both sub-catchment and catchment levels. The model reveals that catchment nitrate export is controlled by (1) the headwater sub-catchment with fast TTs and a high denitrification rate, and (2) the lowland sub-catchment with longer TTs and a low denitrification rate. In general, the proposed approach serves as a promising tool for understanding the interplay of transport and reaction times between different sub-catchments, which controls nitrate export in a mesoscale heterogeneous catchment.</p><p>Nguyen, T. V., Kumar, R., Lutz, S. R., Musolff, A., Yang, J., & Fleckenstein, J. H. (2020). Modeling Nitrate Export from a Mesoscale Catchment Using StorAge Selection Functions. Water Resources Research, 56, e2020WR028490</p>


2021 ◽  
Vol 83 (7) ◽  
pp. 1728-1738
Author(s):  
Zhang Dan ◽  
Wang Chuan ◽  
Zhou Qiaohong ◽  
Yuan Xingzhong

Abstract Restoration of submerged macrophytes is one of the important measures for ecological treatment of eutrophic lakes. The changes in physical and chemical conditions caused by submerged macrophytes also affect the process of benthic nitrogen cycling. The growth period of Potamogeton crispus is mainly in winter. In order to understand the effect of submerged macrophytes growing in winter on nitrification rate and denitrification rate in the process of nitrogen cycling, experiments were carried out from winter to summer with vegetated and non-vegetated treatments. The results showed that the effect of submerged macrophytes on water temperature was not significant in winter. The nitrogen cycling was mainly affected by variables, which were inorganic nitrogen and dissolved oxygen. Submerged macrophytes had little effect on nitrification rate, but had a certain inhibition on denitrification rate by providing oxygen from photosynthesis. In total, submerged macrophytes growing in winter have little effect on nitrogen cycling in sediment. However, submerged macrophytes growing in winter can increase the attachment surface of microbes and inhibit resuspension of sediment, which play a complementary role to submerged macrophytes growing in summer for maintaining stability of eutrophic lakes.


Author(s):  
Renato Gavasci ◽  
Francesco Lombardi ◽  
Massimo Raboni

Two calculation models of the Specific Denitrification Rate (SDNR) are analyzed to highlight the sensitivity of this parameter to the Food:Microorganisms ratio in the denitrification reactor (F:MDEN). One of these models is empirical while the second was elaborated on a deterministic basis. Both models reveal a linear dependence of SDNR20°C on F:MDEN and in a first approximation they are comparable only in a narrow range of concentration of dissolved oxygen (DO) in denitrification, specifically DO=0.25-0.35 mg L-1. These values frequently occur in well designed and well operated sewage treatment plants. Outside this range, the role of F:MDEN must necessarily be examined in combination with DO because of the relevant influence of the latter on the efficiency of the denitrification process.


Sign in / Sign up

Export Citation Format

Share Document