scholarly journals Evolutionary and plastic responses to climate change in terrestrial plant populations

2013 ◽  
Vol 7 (1) ◽  
pp. 123-139 ◽  
Author(s):  
Steven J. Franks ◽  
Jennifer J. Weber ◽  
Sally N. Aitken
2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Avery P. Hill ◽  
Christopher B. Field

AbstractDue to climate change, plant populations experience environmental conditions to which they are not adapted. Our understanding of the next century’s vegetation geography depends on the distance, direction, and rate at which plant distributions shift in response to a changing climate. In this study we test the sensitivity of tree range shifts (measured as the difference between seedling and mature tree ranges in climate space) to wildfire occurrence, using 74,069 Forest Inventory Analysis plots across nine states in the western United States. Wildfire significantly increased the seedling-only range displacement for 2 of the 8 tree species in which seedling-only plots were displaced from tree-plus-seedling plots in the same direction with and without recent fire. The direction of climatic displacement was consistent with that expected for warmer and drier conditions. The greater seedling-only range displacement observed across burned plots suggests that fire can accelerate climate-related range shifts and that fire and fire management will play a role in the rate of vegetation redistribution in response to climate change.


Data ◽  
2019 ◽  
Vol 4 (3) ◽  
pp. 107 ◽  
Author(s):  
Ganesh K. Jaganathan ◽  
Sarah E. Dalrymple

Cold tolerance in seeds is not well understood compared to mechanisms in aboveground plant tissue but is crucial to understanding how plant populations persist in extreme cold conditions. Counter-intuitively, the ability of seeds to survive extreme cold may become more important in the future due to climate change projections. This is due to the loss of the insulating snow bed resulting in the actual temperatures experienced at soil surface level being much colder than without snow cover. Seed survival in extremely low temperatures is conferred by mechanisms that can be divided into freezing avoidance and freezing tolerance depending on the location of ice crystal formation within the seed. We present a dataset of alpine angiosperm species with seed mass and seed structure defined as endospermic and non-endospermic. This is presented alongside the locations of temperature minima per species which can be used to examine the extent to which different seed structures are associated with snow cover. We hope that the dataset can be used by others to demonstrate if certain seed structures and sizes are associated with snow cover, and if so, would they be negatively impacted by the loss of snow resulting from climate change.


2018 ◽  
Vol 8 (16) ◽  
pp. 7921-7935 ◽  
Author(s):  
Nathalie Isabelle Chardon ◽  
Sonja Wipf ◽  
Christian Rixen ◽  
Annabarbara Beilstein ◽  
Daniel Forest Doak

Ecosphere ◽  
2016 ◽  
Vol 7 (10) ◽  
Author(s):  
Andrew T. Tredennick ◽  
Mevin B. Hooten ◽  
Cameron L. Aldridge ◽  
Collin G. Homer ◽  
Andrew R. Kleinhesselink ◽  
...  

2021 ◽  
Vol 8 ◽  
Author(s):  
Naim M. Bautista ◽  
Amélie Crespel

The current and projected impacts of climate change are shaped by unprecedented rates of change in environmental conditions. These changes likely mismatch the existing coping capacities of organisms within-generations and impose challenges for population resilience across generations. To better understand the impacts of projected scenarios of climate change on organismal fitness and population maintenance, it is crucial to consider and integrate the proximate sources of variability of plastic and adaptive responses to environmental change in future empirical approaches. Here we explore the implications of considering: (a) the variability in different time-scale events of climate change; (b) the variability in plastic responses from embryonic to adult developmental stages; (c) the importance of considering the species life-history traits; and (d) the influence of trans-generational effects for individual survival and population maintenance. Finally, we posit a list of future challenges with questions and approaches that will help to elucidate knowledge gaps, to better inform conservation and management actions in preserving ecosystems and biodiversity.


2021 ◽  
Vol 9 ◽  
Author(s):  
Rocco F. Notarnicola ◽  
Adrienne B. Nicotra ◽  
Loeske E. B. Kruuk ◽  
Pieter A. Arnold

Climate change is generating both sustained trends in average temperatures and higher frequency and intensity of extreme events. This poses a serious threat to biodiversity, especially in vulnerable environments, like alpine systems. Phenotypic plasticity is considered to be an adaptive mechanism to cope with climate change in situ, yet studies of the plastic responses of alpine plants to high temperature stress are scarce. Future weather extremes will occur against a background of warmer temperatures, but we do not know whether acclimation to warmer average temperatures confers tolerance to extreme heatwaves. Nor do we know whether populations on an elevational gradient differ in their tolerance or plasticity in response to warming and heatwave events. We investigated the responses of a suite of functional traits of an endemic Australian alpine herb, Wahlenbergia ceracea, to combinations of predicted future (warmer) temperatures and (relative) heatwaves. We also tested whether responses differed between high- vs. low-elevation populations. When grown under warmer temperatures, W. ceracea plants showed signs of acclimation by means of higher thermal tolerance (Tcrit, T50, and Tmax). They also invested more in flower production, despite showing a concurrent reduction in photosynthetic efficiency (Fv/Fm) and suppression of seed production. Heatwaves reduced both photosynthetic efficiency and longevity. However, we found no evidence that acclimation to warmer temperatures conferred tolerance of the photosynthetic machinery to heatwaves. Instead, when exposed to heatwaves following warmer growth temperatures, plants had lower photosynthetic efficiency and underwent a severe reduction in seed production. High- and low-elevation populations and families exhibited limited genetic variation in trait means and plasticity in response to temperature. We conclude that W. ceracea shows some capacity to acclimate to warming conditions but there is no evidence that tolerance of warmer temperatures confers any resilience to heatwaves.


Sign in / Sign up

Export Citation Format

Share Document