scholarly journals THE ROLE OF INBREEDING DEPRESSION AND MATING SYSTEM IN THE EVOLUTION OF HETEROSTYLY

Evolution ◽  
2013 ◽  
Vol 67 (8) ◽  
pp. 2309-2322 ◽  
Author(s):  
Jennifer J. Weber ◽  
Stephen G. Weller ◽  
Ann K. Sakai ◽  
Olga V. Tsyusko ◽  
Travis C. Glenn ◽  
...  
Oecologia ◽  
2017 ◽  
Vol 185 (4) ◽  
pp. 629-639 ◽  
Author(s):  
Raquel Monclús ◽  
Jaime Muriel ◽  
Lorenzo Pérez-Rodríguez ◽  
Anders P. Møller ◽  
Diego Gil

2016 ◽  
Vol 283 (1838) ◽  
pp. 20161023 ◽  
Author(s):  
Natalie Pilakouta ◽  
Per T. Smiseth

A maternal effect is a causal influence of the maternal phenotype on the offspring phenotype over and above any direct effects of genes. There is abundant evidence that maternal effects can have a major impact on offspring fitness. Yet, no previous study has investigated the potential role of maternal effects in influencing the severity of inbreeding depression in the offspring. Inbreeding depression is a reduction in the fitness of inbred offspring relative to outbred offspring. Here, we tested whether maternal effects due to body size alter the magnitude of inbreeding depression in the burying beetle Nicrophorus vespilloides . We found that inbreeding depression in larval survival was more severe for offspring of large females than offspring of small females. This might be due to differences in how small and large females invest in an inbred brood because of their different prospects for future breeding opportunities. To our knowledge, this is the first evidence for a causal effect of the maternal phenotype on the severity of inbreeding depression in the offspring. In natural populations that are subject to inbreeding, maternal effects may drive variation in inbreeding depression and therefore contribute to variation in the strength and direction of selection for inbreeding avoidance.


2014 ◽  
Vol 369 (1648) ◽  
pp. 20130344 ◽  
Author(s):  
Spencer C. H. Barrett ◽  
Ramesh Arunkumar ◽  
Stephen I. Wright

The evolution of self-fertilization from outcrossing has occurred on numerous occasions in flowering plants. This shift in mating system profoundly influences the morphology, ecology, genetics and evolution of selfing lineages. As a result, there has been sustained interest in understanding the mechanisms driving the evolution of selfing and its environmental context. Recently, patterns of molecular variation have been used to make inferences about the selective mechanisms associated with mating system transitions. However, these inferences can be complicated by the action of linked selection following the transition. Here, using multilocus simulations and comparative molecular data from related selfers and outcrossers, we demonstrate that there is little evidence for strong bottlenecks associated with initial transitions to selfing, and our simulation results cast doubt on whether it is possible to infer the role of bottlenecks associated with reproductive assurance in the evolution of selfing. They indicate that the effects of background selection on the loss of diversity and efficacy of selection occur rapidly following the shift to high selfing. Future comparative studies that integrate explicit ecological and genomic details are necessary for quantifying the independent and joint effects of selection and demography on transitions to selfing and the loss of genetic diversity.


1997 ◽  
Vol 70 (2) ◽  
pp. 143-153 ◽  
Author(s):  
YONG-BI FU ◽  
DEBORAH CHARLESWORTH ◽  
GENE NAMKOONG

A deterministic analysis is conducted to examine marginal dominance for two linked viability loci influencing inbreeding depression and its graphical inferences. Four estimators of marginal dominance are derived, assuming a biallelic marker locus completely linked to one of the viability loci, and the biases in expected estimates due to the other deleterious locus are discussed. Three conditions under which apparent partial dominance or underdominance could occur are found, i.e. when two multiplicative, partially recessive loci are linked in coupling phase and when two synergistic, highly overdominant loci are linked in coupling or repulsion phases. Expected frequencies of the three marker genotypes in selfed progeny are derived, considering two linkage phases, two types of marker locus position with respect to the viability loci, and the multiplicative and synergistic fitness models. Segregation ratios are generated for the marker locus linked to either two overdominant or partially recessive loci and plotted in gene action graphs to examine the robustness of the graphical inferences of gene action due to the presence of an additional linked viability locus. Under a multiplicative fitness model, the presence of an additional partially recessive or overdominant locus in the vicinity of the marker locus does not greatly affect the graphical inferences of the relative role of partially recessive or overdominant genes in expression of inbreeding depression. A marker linked to two synergistic, highly overdominant loci can behave as though linked to a partially recessive, partially dominant or underdominant locus, even with relatively weak synergism.


Sign in / Sign up

Export Citation Format

Share Document