scholarly journals Sexual antagonism in haplodiploids

Evolution ◽  
2021 ◽  
Author(s):  
Thomas J. Hitchcock ◽  
Andy Gardner ◽  
Laura Ross
Keyword(s):  
2020 ◽  
Vol 12 (4) ◽  
pp. 243-258 ◽  
Author(s):  
Wen-Juan Ma ◽  
Fantin Carpentier ◽  
Tatiana Giraud ◽  
Michael E Hood

Abstract Degenerative mutations in non-recombining regions, such as in sex chromosomes, may lead to differential expression between alleles if mutations occur stochastically in one or the other allele. Reduced allelic expression due to degeneration has indeed been suggested to occur in various sex-chromosome systems. However, whether an association occurs between specific signatures of degeneration and differential expression between alleles has not been extensively tested, and sexual antagonism can also cause differential expression on sex chromosomes. The anther-smut fungus Microbotryum lychnidis-dioicae is ideal for testing associations between specific degenerative signatures and differential expression because 1) there are multiple evolutionary strata on the mating-type chromosomes, reflecting successive recombination suppression linked to mating-type loci; 2) separate haploid cultures of opposite mating types help identify differential expression between alleles; and 3) there is no sexual antagonism as a confounding factor accounting for differential expression. We found that differentially expressed genes were enriched in the four oldest evolutionary strata compared with other genomic compartments, and that, within compartments, several signatures of sequence degeneration were greater for differentially expressed than non-differentially expressed genes. Two particular degenerative signatures were significantly associated with lower expression levels within differentially expressed allele pairs: upstream insertion of transposable elements and mutations truncating the protein length. Other degenerative mutations associated with differential expression included nonsynonymous substitutions and altered intron or GC content. The association between differential expression and allele degeneration is relevant for a broad range of taxa where mating compatibility or sex is determined by genes located in large regions where recombination is suppressed.


Author(s):  
Richard P Meisel

Abstract In species with polygenic sex determination, multiple male- and female-determining loci on different proto-sex chromosomes segregate as polymorphisms within populations. The extent to which these polymorphisms are at stable equilibria is not yet resolved. Previous work demonstrated that polygenic sex determination is most likely to be maintained as a stable polymorphism when the proto-sex chromosomes have opposite (sexually antagonistic) fitness effects in males and females. However, these models usually consider polygenic sex determination systems with only two proto-sex chromosomes, or they do not broadly consider the dominance of the alleles under selection. To address these shortcomings, I used forward population genetic simulations to identify selection pressures that can maintain polygenic sex determination under different dominance scenarios in a system with more than two proto-sex chromosomes (modeled after the house fly). I found that overdominant fitness effects of male-determining proto-Y chromosomes are more likely to maintain polygenic sex determination than dominant, recessive, or additive fitness effects. The overdominant fitness effects that maintain polygenic sex determination tend to have proto-Y chromosomes with sexually antagonistic effects (male-beneficial and female-detrimental). In contrast, dominant fitness effects that maintain polygenic sex determination tend to have sexually antagonistic multi-chromosomal genotypes, but the individual proto-sex chromosomes do not have sexually antagonistic effects. These results demonstrate that sexual antagonism can be an emergent property of the multi-chromosome genotype without individual sexually antagonistic chromosomes. My results further illustrate how the dominance of fitness effects has consequences for both the likelihood that polygenic sex determination will be maintained as well as the role sexually antagonistic selection is expected to play in maintaining the polymorphism.


2017 ◽  
Vol 114 (27) ◽  
pp. 7067-7072 ◽  
Author(s):  
Sara Branco ◽  
Hélène Badouin ◽  
Ricardo C. Rodríguez de la Vega ◽  
Jérôme Gouzy ◽  
Fantin Carpentier ◽  
...  

Sex chromosomes can display successive steps of recombination suppression known as “evolutionary strata,” which are thought to result from the successive linkage of sexually antagonistic genes to sex-determining genes. However, there is little evidence to support this explanation. Here we investigate whether evolutionary strata can evolve without sexual antagonism using fungi that display suppressed recombination extending beyond loci determining mating compatibility despite lack of male/female roles associated with their mating types. By comparing full-length chromosome assemblies from five anther-smut fungi with or without recombination suppression in their mating-type chromosomes, we inferred the ancestral gene order and derived chromosomal arrangements in this group. This approach shed light on the chromosomal fusion underlying the linkage of mating-type loci in fungi and provided evidence for multiple clearly resolved evolutionary strata over a range of ages (0.9–2.1 million years) in mating-type chromosomes. Several evolutionary strata did not include genes involved in mating-type determination. The existence of strata devoid of mating-type genes, despite the lack of sexual antagonism, calls for a unified theory of sex-related chromosome evolution, incorporating, for example, the influence of partially linked deleterious mutations and the maintenance of neutral rearrangement polymorphism due to balancing selection on sexes and mating types.


2021 ◽  
Author(s):  
Ching-Ho Chang ◽  
Lauren E. Gregory ◽  
Kathleen E. Gordon ◽  
Colin D. Meiklejohn ◽  
Amanda M. Larracuente

AbstractY chromosomes across diverse species convergently evolve a gene-poor, heterochromatic organization enriched for duplicated genes, LTR retrotransposable elements, and satellite DNA. Sexual antagonism and a loss of recombination play major roles in the degeneration of young Y chromosomes. However, the processes shaping the evolution of mature, already degenerated Y chromosomes are less well-understood. Because Y chromosomes evolve rapidly, comparisons between closely related species are particularly useful. We generated de novo long read assemblies complemented with cytological validation to reveal Y chromosome organization in three closely related species of the Drosophila simulans complex, which diverged only 250,000 years ago and share >98% sequence identity. We find these Y chromosomes are divergent in their organization and repetitive DNA composition and discover new Y-linked gene families whose evolution is driven by both positive selection and gene conversion. These Y chromosomes are also enriched for large deletions, suggesting that the repair of double-strand breaks on Y chromosomes may be biased toward microhomology-mediated end joining over canonical non-homologous end-joining. We propose that this repair mechanism generally contributes to the convergent evolution of Y chromosome organization.


2019 ◽  
Author(s):  
Jessica K. Abbott ◽  
Oscar Rios-Cardenas ◽  
Molly Morris

AbstractAlternative reproductive tactics occur when individuals of the same sex have a suite of morphological and/or behavioural traits that allow them to pursue different reproductive strategies. A common pattern is e.g. the existence of “courter” and “sneaker” tactics within males. We have previously argued that alternative reproductive tactics should be subject to genetic conflict over the phenotypic expression of traits, similar to sexual antagonism. In this process, which we called intra-locus tactical conflict, genetically determined tactics experience conflicting selection on a shared phenotypic trait, such as body size, but a positive genetic correlation between tactics in body size prevents either tactic from reaching its optimum. Recently, other authors have attempted to extend this idea to developmentally plastic alternative reproductive tactics, with mixed results. However, it is not clear whether we should expect intra-locus tactical conflict in developmentally plastic tactics or not. We have therefore run a series of simulation models investigating under what conditions we should expect to see positive estimates of the inter-tactical genetic correlation, since a positive genetic correlation is a prerequisite for the existence of intra-locus tactical conflict. We found that for autosomal, X-linked, and Y-linked genetically-determined tactics, estimated inter-tactical genetic correlations were generally high. However, for developmentally plastic tactics, the genetic correlation depends on the properties of the switching threshold between tactics. If it is fixed, then estimated genetic correlations are positive, but if there is genetic variation in the switch-point, then any sign and magnitude of estimated genetic correlation is possible, even for highly heritable traits where the true underlying correlation is perfect. This means that caution should be used when investigating genetic constraints in plastic phenotypes.


2017 ◽  
Vol 114 (14) ◽  
pp. 3690-3695 ◽  
Author(s):  
Eija Lonn ◽  
Esa Koskela ◽  
Tapio Mappes ◽  
Mikael Mokkonen ◽  
Angela M. Sims ◽  
...  

Most variation in behavior has a genetic basis, but the processes determining the level of diversity at behavioral loci are largely unknown for natural populations. Expression of arginine vasopressin receptor 1a (Avpr1a) and oxytocin receptor (Oxtr) in specific regions of the brain regulates diverse social and reproductive behaviors in mammals, including humans. That these genes have important fitness consequences and that natural populations contain extensive diversity at these loci implies the action of balancing selection. In Myodes glareolus, Avpr1a and Oxtr each contain a polymorphic microsatellite locus located in their 5′ regulatory region (the regulatory region-associated microsatellite, RRAM) that likely regulates gene expression. To test the hypothesis that balancing selection maintains diversity at behavioral loci, we released artificially bred females and males with different RRAM allele lengths into field enclosures that differed in population density. The length of Avpr1a and Oxtr RRAMs was associated with reproductive success, but population density and the sex interacted to determine the optimal genotype. In general, longer Avpr1a RRAMs were more beneficial for males, and shorter RRAMs were more beneficial for females; the opposite was true for Oxtr RRAMs. Moreover, Avpr1a RRAM allele length is correlated with the reproductive success of the sexes during different phases of reproduction; for males, RRAM length correlated with the numbers of newborn offspring, but for females selection was evident on the number of weaned offspring. This report of density-dependence and sexual antagonism acting on loci within the arginine vasopressin–oxytocin pathway explains how genetic diversity at Avpr1a and Oxtr could be maintained in natural populations.


2018 ◽  
Vol 27 (18) ◽  
pp. 3572-3581 ◽  
Author(s):  
Ludovic Dutoit ◽  
Carina F. Mugal ◽  
Paulina Bolívar ◽  
Mi Wang ◽  
Krystyna Nadachowska-Brzyska ◽  
...  

2021 ◽  
Author(s):  
Stephen P. De Lisle

AbstractA well-known property of sexual selection combined with a cross sex genetic correlation (rmf), is that it can facilitate a peak shift on the adaptive landscape. How do these diversifying effects of sexual selection +rmf balance with the constraints imposed by such sexual antagonism, to affect macroevolution of sexual dimorphism? Here, I extend existing quantitative genetic models of evolution on complex adaptive landscapes. Beyond recovering classical predictions for the conditions promoting a peak shift, I show that when rmf is moderate to strong, relatively weak sexual selection is required to induce a peak shift in males only. Increasing the strength of sexual leads to a sexually-concordant peak shift, suggesting that macroevolutionary rates of sexual dimorphism may be largely decoupled from the strength of within-population sexual selection. Accounting explicitly for demography further reveals that sex-specific peak shifts may be more likely to be successful than concordant shifts in the face of extinction, especially when natural selection is strong. An overarching conclusion is that macroevolutionary patterns of sexual dimorphism are unlikely to be readily explained by within-population estimates of selection or constraint alone.


Sign in / Sign up

Export Citation Format

Share Document