scholarly journals Selective ancestral sorting and de novo evolution in the agricultural invasion of Amaranthus tuberculatus

Evolution ◽  
2021 ◽  
Author(s):  
Julia M. Kreiner ◽  
Amalia Caballero ◽  
Stephen I. Wright ◽  
John R. Stinchcombe
2021 ◽  
Author(s):  
Julia M. Kreiner ◽  
Amalia Caballero ◽  
Stephen I. Wright ◽  
John R. Stinchcombe

The relative role of hybridization, de novo evolution, and standing variation in weed adaptation to agricultural environments is largely unknown. In Amaranthus tuberculatus, a widespread North American agricultural weed, adaptation is likely influenced by recent secondary contact and admixture of two previously isolated subspecies. We characterized the extent of adaptation and phenotypic differentiation accompanying the spread of A. tuberculatus into agricultural environments and the contribution of subspecies divergence. We generated phenotypic and whole-genome sequence data from a manipulative common garden experiment, using paired samples from natural and agricultural populations. We found strong latitudinal, longitudinal, and sex differentiation in phenotypes, and subtle differences among agricultural and natural environments that were further resolved with ancestry-based inference. The transition into agricultural environments has favoured southwestern var. rudis ancestry that leads to higher biomass and environment-specific phenotypes: increased biomass and earlier flowering under reduced water availability, and reduced plasticity in fitness-related traits. We also detected de novo adaptation to agricultural habitats independent of ancestry effects, including marginally higher biomass and later flowering in agricultural populations, and a time to germination home advantage. Therefore, the invasion of A. tuberculatus into agricultural environments has drawn on adaptive variation across multiple timescales—through both preadaptation via the preferential sorting of var. rudis ancestry and de novo local adaptation.


2018 ◽  
Author(s):  
Julia M. Kreiner ◽  
Darci Ann Giacomini ◽  
Felix Bemm ◽  
Bridgit Waithaka ◽  
Julian Regalado ◽  
...  

The selection pressure exerted by herbicides has led to the repeated evolution of herbicide resistance in weeds. The evolution of herbicide resistance on contemporary timescales in turn provides an outstanding opportunity to investigate key questions about the genetics of adaptation, in particular, the relative importance of adaptation from new mutations, standing genetic variation, or geographic spread of adaptive alleles through gene flow. Glyphosate-resistant Amaranthus tuberculatus poses one of the most significant threats to crop yields in the midwestern United States (1), with both agricultural populations and herbicide resistance only recently emerging in Canada (2, 3). To understand the evolutionary mechanisms driving the spread of resistance, we sequenced and assembled the A. tuberculatus genome and investigated the origins and population genomics of 163 resequenced glyphosate-resistant and susceptible individuals from Canada and the USA. In Canada, we discovered multiple modes of convergent evolution: in one locality, resistance appears to have evolved through introductions of preadapted US genotypes, while in another, there is evidence for the independent evolution of resistance on genomic backgrounds that are historically non-agricultural. Moreover, resistance on these local, non-agricultural backgrounds appears to have occurred predominantly through the partial sweep of a single haplotype. In contrast, resistant haplotypes arising from the midwestern US show multiple amplification haplotypes segregating both between and within populations. Therefore, while the remarkable species-wide diversity of A. tuberculatus has facilitated geographic parallel adaptation of glyphosate resistance, more recently established agricultural populations are limited to adaptation in a more mutation-limited framework.SignificanceWhile evolution is often thought of as playing out over millions of years, adaptation to new enviroments can occur in real time, presenting key opportunities to understand evolutionary processes. An important example comes from agriculture, where many weeds have evolved herbicide resistance. We have studied glyphosate resistant Amaranthus tuberculatus, a significant threat to crop yields in the midwestern US and Canada. Genome analyses showed that rapid evolution can either occur by “borrowing” resistance alleles from other locations, or by de novo evolution of herbicide resistance in a genetic background that was not previously associated with agriculture. Differences in recent evolutionary histories have thus favored either adaptation from pre-existing variation or new mutation in different parts of the A. tuberculatus range.


Author(s):  
Aline Byrnes ◽  
Elsa E. Ramos ◽  
Minoru Suzuki ◽  
E.D. Mayfield

Renal hypertrophy was induced in 100 g male rats by the injection of 250 mg folic acid (FA) dissolved in 0.3 M NaHCO3/kg body weight (i.v.). Preliminary studies of the biochemical alterations in ribonucleic acid (RNA) metabolism of the renal tissue have been reported recently (1). They are: RNA content and concentration, orotic acid-c14 incorporation into RNA and acid soluble nucleotide pool, intracellular localization of the newly synthesized RNA, and the specific activity of enzymes of the de novo pyrimidine biosynthesis pathway. The present report describes the light and electron microscopic observations in these animals. For light microscopy, kidney slices were fixed in formalin, embedded, sectioned, and stained with H & E and PAS.


Author(s):  
M. Shlepr ◽  
R. L. Turner

Calcification in the echinoderms occurs within a limited-volume cavity enclosed by cytoplasmic extensions of the mineral depositing cells, the sclerocytes. The current model of this process maintains that the sheath formed from these cytoplasmic extensions is syncytial. Prior studies indicate that syncytium formation might be dependent on sclerocyte density and not required for calcification. This model further envisions that ossicles formed de novo nucleate and grow intracellularly until the ossicle effectively outgrows the vacuole. Continued ossicle growth occurs within the sheath but external to the cell membrane. The initial intracellular location has been confirmed only for elements of the echinoid tooth.The regenerating aboral disc integument of ophiophragmus filograneus was used to test the current echinoderm calcification model. This tissue is free of calcite fragments, thus avoiding questions of cellular engulfment, and ossicles are formed de novo. The tissue calcification pattern was followed by light microscopy in both living and fixed preparations.


2019 ◽  
Vol 476 (22) ◽  
pp. 3521-3532
Author(s):  
Eric Soubeyrand ◽  
Megan Kelly ◽  
Shea A. Keene ◽  
Ann C. Bernert ◽  
Scott Latimer ◽  
...  

Plants have evolved the ability to derive the benzenoid moiety of the respiratory cofactor and antioxidant, ubiquinone (coenzyme Q), either from the β-oxidative metabolism of p-coumarate or from the peroxidative cleavage of kaempferol. Here, isotopic feeding assays, gene co-expression analysis and reverse genetics identified Arabidopsis 4-COUMARATE-COA LIGASE 8 (4-CL8; At5g38120) as a contributor to the β-oxidation of p-coumarate for ubiquinone biosynthesis. The enzyme is part of the same clade (V) of acyl-activating enzymes than At4g19010, a p-coumarate CoA ligase known to play a central role in the conversion of p-coumarate into 4-hydroxybenzoate. A 4-cl8 T-DNA knockout displayed a 20% decrease in ubiquinone content compared with wild-type plants, while 4-CL8 overexpression boosted ubiquinone content up to 150% of the control level. Similarly, the isotopic enrichment of ubiquinone's ring was decreased by 28% in the 4-cl8 knockout as compared with wild-type controls when Phe-[Ring-13C6] was fed to the plants. This metabolic blockage could be bypassed via the exogenous supply of 4-hydroxybenzoate, the product of p-coumarate β-oxidation. Arabidopsis 4-CL8 displays a canonical peroxisomal targeting sequence type 1, and confocal microscopy experiments using fused fluorescent reporters demonstrated that this enzyme is imported into peroxisomes. Time course feeding assays using Phe-[Ring-13C6] in a series of Arabidopsis single and double knockouts blocked in the β-oxidative metabolism of p-coumarate (4-cl8; at4g19010; at4g19010 × 4-cl8), flavonol biosynthesis (flavanone-3-hydroxylase), or both (at4g19010 × flavanone-3-hydroxylase) indicated that continuous high light treatments (500 µE m−2 s−1; 24 h) markedly stimulated the de novo biosynthesis of ubiquinone independently of kaempferol catabolism.


2020 ◽  
Vol 158 (6) ◽  
pp. S-947
Author(s):  
Asad Ur Rahman ◽  
Ishtiaq Hussain ◽  
Badar Hasan ◽  
Kanwarpreet Tandon ◽  
Fernando Castro

2007 ◽  
Vol 177 (4S) ◽  
pp. 394-394
Author(s):  
Yoshihisa Matsukawa ◽  
Yoko Yoshikawa ◽  
Tomonori Komatsu ◽  
Yasushi Yoshino ◽  
Ryohei Hattori ◽  
...  

2004 ◽  
Vol 171 (4S) ◽  
pp. 515-515
Author(s):  
Felipe G. Balbontin ◽  
Bryce Kiberd ◽  
Philip Belitsky ◽  
Dharm Singh ◽  
Albert Fraser ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document