Cytoskeletal protein Zyxin in embryonic development: from controlling cell movements and pluripotency to regulating embryonic patterning

FEBS Journal ◽  
2021 ◽  
Author(s):  
Natalia Y. Martynova ◽  
Elena A. Parshina ◽  
Andrey G. Zaraisky
eLife ◽  
2017 ◽  
Vol 6 ◽  
Author(s):  
Jose L Pelliccia ◽  
Granton A Jindal ◽  
Rebecca D Burdine

Vertebrate embryonic patterning depends on signaling from Nodal, a TGFβ superfamily member. There are three Nodal orthologs in zebrafish; southpaw directs left-right asymmetries, while squint and cyclops function earlier to pattern mesendoderm. TGFβ member Vg1 is implicated in mesoderm formation but the role of the zebrafish ortholog, Growth differentiation factor 3 (Gdf3), has not been fully explored. We show that zygotic expression of gdf3 is dispensable for embryonic development, while maternally deposited gdf3 is required for mesendoderm formation and dorsal-ventral patterning. We further show that Gdf3 can affect left-right patterning at multiple stages, including proper development of regional cell morphology in Kupffer’s vesicle and the establishment of southpaw expression in the lateral plate mesoderm. Collectively, our data indicate that gdf3 is critical for robust Nodal signaling at multiple stages in zebrafish embryonic development.


Cell Systems ◽  
2016 ◽  
Vol 3 (2) ◽  
pp. 160-171 ◽  
Author(s):  
Rob Jelier ◽  
Angela Kruger ◽  
Jim Swoger ◽  
Timo Zimmermann ◽  
Ben Lehner

2021 ◽  
Author(s):  
Andrew J Aman ◽  
Lauren M Saunders ◽  
Sanjay R Srivatsan ◽  
Cole Trapnell ◽  
David M. Parichy

Regulation of neural crest derived pigment cells and dermal cells that form skin appendages is broadly similar across vertebrate taxa. In zebrafish, organized pigment stripes and an array of calcified scales form simultaneously in the skin during post-embryonic development. Understanding mechanisms that regulate stripe patterning and dermal morphogenesis may lead to discovery of fundamental mechanisms that govern development of animal form. To learn about cell types and potential signaling interactions that govern skin patterning and morphogenesis we generated and analyzed single cell transcriptomes of skin with genetic or induced defects in pigmentation and squamation. These data reveal a previously undescribed population of ameloblast-like epidermal cells, suggest hormonal control of epithelial-mesenchymal signaling, clarify the signaling network that governs scale papillae development, and identify the hypodermis as a crucial pigment cell support environment. These analyses provide new insights into the development of skin and pigmentation and highlight the utility of zebrafish for uncovering essential features of post-embryonic development in vertebrates.


Development ◽  
1991 ◽  
Vol 111 (2) ◽  
pp. 425-436 ◽  
Author(s):  
B.J. Swalla ◽  
M.R. Badgett ◽  
W.R. Jeffery

The myoplasm of ascidian eggs is a localized cytoskeletal domain that is segregated to presumptive larval tail muscle cells during embryonic development. We have identified a cytoskeletal protein recognized by a vertebrate neurofilament monoclonal antibody (NN18) which is concentrated in the myoplasm in eggs and embryos of a variety of ascidian species. The NN18 antigen is localized in the periphery of unfertilized eggs, segregates with the myoplasm after fertilization, and enters the larval tail muscle cells during embryonic development. Western blots of one-dimensional and two-dimensional gels showed that the major component recognized by NN18 antibody is a 58 × 10(3) Mr protein (p58), which exists in at least three different isoforms. The enrichment of p58 in the Triton X-100-insoluble fraction of eggs and its reticular staining pattern in eggs and embryos suggests that it is a cytoskeletal protein. In subsequent experiments, p58 was used as a marker to determine whether changes in the myoplasm occur in eggs of anural ascidian species, i.e. those exhibiting a life cycle lacking tadpole larvae with differentiated muscle cells. Although p58 was localized in the myoplasm in eggs of four urodele ascidian species that develop into swimming tadpole larvae, this protein was distributed uniformly in eggs of three anural ascidian species. The eggs of two of these anural species contained the actin lamina, another component of the myoplasm, whereas the third anural species lacked the actin lamina. There was no detectible localization of p58 after fertilization or segregation into muscle lineage cells during cleavage of anural eggs. NN18 antigen was uniformly distributed in pre-vitellogenic oocytes and then localized in the perinuclear zone during vitellogenesis of urodele and anural ascidians. Subsequently, NN18 antigen was concentrated in the peripheral cytoplasm of post-vitellogenic oocytes and mature eggs of urodele, but not anural, ascidians. It is concluded that the myoplasm of ascidian eggs contains an intermediate filament-like cytoskeletal network which is missing in anural species that have modified or eliminated the tadpole larva.


PLoS Genetics ◽  
2018 ◽  
Vol 14 (8) ◽  
pp. e1007551 ◽  
Author(s):  
Yan-Yi Xing ◽  
Xiao-Ning Cheng ◽  
Yu-Long Li ◽  
Chong Zhang ◽  
Audrey Saquet ◽  
...  

2001 ◽  
Vol 7 (S2) ◽  
pp. 1012-1013
Author(s):  
Uyen Tram ◽  
William Sullivan

Embryonic development is a dynamic event and is best studied in live animals in real time. Much of our knowledge of the early events of embryogenesis, however, comes from immunofluourescent analysis of fixed embryos. While these studies provide an enormous amount of information about the organization of different structures during development, they can give only a static glimpse of a very dynamic event. More recently real-time fluorescent studies of living embryos have become much more routine and have given new insights to how different structures and organelles (chromosomes, centrosomes, cytoskeleton, etc.) are coordinately regulated. This is in large part due to the development of commercially available fluorescent probes, GFP technology, and newly developed sensitive fluorescent microscopes. For example, live confocal fluorescent analysis proved essential in determining the primary defect in mutations that disrupt early nuclear divisions in Drosophila melanogaster. For organisms in which GPF transgenics is not available, fluorescent probes that label DNA, microtubules, and actin are available for microinjection.


2014 ◽  
Vol 47 (06) ◽  
Author(s):  
N Bergemann ◽  
K Boyle ◽  
WE Paulus

Sign in / Sign up

Export Citation Format

Share Document