Wnt Signaling in Embryonic Development

2000 ◽  
Vol 14 (14) ◽  
pp. 1741-1749 ◽  
Author(s):  
Ken-ichi Tago ◽  
Tsutomu Nakamura ◽  
Michiru Nishita ◽  
Junko Hyodo ◽  
Shin-ichi Nagai ◽  
...  

Wnt signaling has an important role in both embryonic development and tumorigenesis. β-Catenin, a key component of the Wnt signaling pathway, interacts with the TCF/LEF family of transcription factors and activates transcription of Wnt target genes. Here, we identify a novel β-catenin-interacting protein, ICAT, that was found to inhibit the interaction of β-catenin with TCF-4 and represses β-catenin–TCF-4-mediated transactivation. Furthermore, ICAT inhibited Xenopus axis formation by interfering with Wnt signaling. These results suggest that ICAT negatively regulates Wnt signaling via inhibition of the interaction between β-catenin and TCF and is integral in development and cell proliferation.


Cells ◽  
2020 ◽  
Vol 9 (4) ◽  
pp. 923
Author(s):  
Tabinda Sidrat ◽  
Abdul Aziz Khan ◽  
Muhammad Idrees ◽  
Myeong-Don Joo ◽  
Lianguang Xu ◽  
...  

Wnt/β-catenin signaling plays vital role in the regulation of cellular proliferation, migration, stem cells cell renewal and genetic stability. This pathway is crucial during the early developmental process; however, the distinct role of Wnt/β-catenin signaling during pre-implantation period of bovine embryonic development is obscure. Here, we evaluated the critical role of Wnt/β-catenin pathway in the regulation of bovine blastocyst (BL) development and hatching. 6 bromoindurbin-3’oxime (6-Bio) was used to stimulate the Wnt signaling. Treatment with 6-Bio induced the expression of peroxisome proliferator-activated receptor-delta (PPARδ). Interestingly, the PPARδ co-localized with β-catenin and form a complex with TCF/LEF transcription factor. This complex potentiated the expression of several Wnt directed genes, which regulate early embryonic development. Inhibition of PPARδ with selective inhibitor 4-chloro-N-(2-{[5-trifluoromethyl]-2-pyridyl]sulfonyl}ethyl)benzamide (Gsk3787) severely perturbed the BL formation and hatching. The addition of Wnt agonist successfully rescued the BL formation and hatching ability. Importantly, the activation of PPARδ expression by Wnt stimulation enhanced cell proliferation and fatty acid oxidation (FAO) metabolism to improve BL development and hatching. In conclusion, our study provides the evidence that Wnt induced PPARδ expression co-localizes with β-catenin and is a likely candidate of canonical Wnt pathway for the regulation of bovine embryonic development.


2020 ◽  
Vol 31 (10) ◽  
pp. 992-1014 ◽  
Author(s):  
Kristina N. Schaefer ◽  
Mira I. Pronobis ◽  
Clara E. Williams ◽  
Shiping Zhang ◽  
Lauren Bauer ◽  
...  

Wnt signaling plays key roles in embryonic development and adult stem cell homeostasis and is altered in human cancer. We explore β-catenin transfer from the destruction complex to the E3 ligase, and test models suggesting Dishevelled and APC2 compete for association with Axin.


2020 ◽  
Vol 98 (11) ◽  
pp. 1511-1523 ◽  
Author(s):  
Ping Meng ◽  
Mingsheng Zhu ◽  
Xian Ling ◽  
Lili Zhou

Abstract The kidney is a key organ in the human body that excretes toxins and sustains the water–electrolyte balance. During embryonic development and disease progression, the kidney undergoes enormous changes in macrostructure, accompanied by a variety of microstructural histological changes, such as glomerular formation and sclerosis, tubule elongation and atrophy, interstitial establishment, and fibrosis progression. All of these rely on the frequent occurrence of cell death and growth. Notably, to overcome disease, some cells regenerate through self-repair or progenitor cell differentiation. However, the signaling mechanisms underlying kidney development and regeneration have not been elucidated. Recently, Wnt signaling has been noted to play an important role. Although it is a well-known developmental signal, the role of Wnt signaling in kidney development and regeneration is not well recognized. In this review, we review the role of Wnt signaling in kidney embryonic development, tissue repair, cell division, and progenitor cell differentiation after injury. Moreover, we briefly highlight advances in our understanding of the pathogenic mechanisms of Wnt signaling in mediating cellular senescence in kidney parenchymal and stem cells, an irreversible arrest of cell proliferation blocking tissue repair and regeneration. We also highlight the therapeutic targets of Wnt signaling in kidney diseases and provide important clues for clinical strategies.


2006 ◽  
Vol 6 (3) ◽  
pp. 325-330 ◽  
Author(s):  
Katsunori Soma ◽  
Kensuke Shiomi ◽  
Kazuko Keino-Masu ◽  
Masayuki Masu

2021 ◽  
Author(s):  
Alexandra A. Vetrova ◽  
Tatiana S. Lebedeva ◽  
Aleena A. Saidova ◽  
Daria M. Kupaeva ◽  
Yulia A. Kraus ◽  
...  

AbstractBackgroundIn almost all metazoans examined to this respect, the axial patterning system based on canonical Wnt (cWnt) signaling operates throughout the course of development. In most metazoans, gastrulation is polar, and embryos develop morphological landmarks of axial polarity, such as blastopore under control/regulation from Wnt signaling. However, in many cnidarian species, gastrulation is morphologically apolar. The question remains whether сWnt signaling providing the establishment of a body axis controls morphogenetic processes involved in apolar gastrulation.ResultsIn this study, we focused on the embryonic development ofDynamena pumila, a cnidarian species with apolar gastrulation. We thoroughly described cell behavior, proliferation, and ultrastructure and examined axial patterning in the embryos of this species. We revealed that the first signs of morphological polarity appear only after the end of gastrulation, while molecular prepatterning of the embryo does exist during gastrulation. We have shown experimentally that inD. pumila,the morphological axis is highly robust against perturbations in cWnt activity.ConclusionOur results suggest that morphogenetic processes are uncoupled from molecular axial patterning during gastrulation inD. pumila. Investigation ofD. pumilamight significantly expand our understanding of the ways in which morphological polarization and axial molecular patterning are linked in Metazoa.


Cells ◽  
2019 ◽  
Vol 8 (10) ◽  
pp. 1173 ◽  
Author(s):  
Yu Ji ◽  
Hongyan Hao ◽  
Kurt Reynolds ◽  
Moira McMahon ◽  
Chengji J. Zhou

Neural crest (NC) cells are a temporary population of multipotent stem cells that generate a diverse array of cell types, including craniofacial bone and cartilage, smooth muscle cells, melanocytes, and peripheral neurons and glia during embryonic development. Defective neural crest development can cause severe and common structural birth defects, such as craniofacial anomalies and congenital heart disease. In the early vertebrate embryos, NC cells emerge from the dorsal edge of the neural tube during neurulation and then migrate extensively throughout the anterior-posterior body axis to generate numerous derivatives. Wnt signaling plays essential roles in embryonic development and cancer. This review summarizes current understanding of Wnt signaling in NC cell induction, delamination, migration, multipotency, and fate determination, as well as in NC-derived cancers.


Sign in / Sign up

Export Citation Format

Share Document