Stand basal area and solar radiation amplify white spruce climate sensitivity in interior Alaska: Evidence from carbon isotopes and tree rings

2018 ◽  
Vol 25 (3) ◽  
pp. 911-926 ◽  
Author(s):  
Elizabeth Fleur Nicklen ◽  
Carl A. Roland ◽  
Adam Z. Csank ◽  
Martin Wilmking ◽  
Roger W. Ruess ◽  
...  

Ecosphere ◽  
2018 ◽  
Vol 9 (10) ◽  
pp. e02462 ◽  
Author(s):  
Micah Wright ◽  
Rosemary L. Sherriff ◽  
Amy E. Miller ◽  
Tammy Wilson


1991 ◽  
Vol 21 (3) ◽  
pp. 410-413 ◽  
Author(s):  
Andrew P. Youngblood

Radial growth following a shelterwood seed cut in a 174-year-old stand of white spruce (Piceaglauca (Moench) Voss) in interior Alaska was compared with growth in an adjacent undisturbed stand of the same age. After a 2-year lag, radial growth of residual trees accelerated an average of 27% in 5 of the next 6 years. Net mean increase in growth after 8 years was 164%. Basal area growth of individual shelterwood trees increased 26.8% over the 14-year posttreatment period, while control trees increased 16.5%.



2021 ◽  
Author(s):  
Patrick F. Sullivan ◽  
Annalis H. Brownlee ◽  
Sarah B.Z. Ellison ◽  
Sean M.P. Cahoon


1989 ◽  
Vol 19 (3) ◽  
pp. 295-308 ◽  
Author(s):  
R. D. Whitney

In an 11-year study in northern Ontario, root rot damage was heaviest in balsam fir, intermediate in black spruce, and least in white spruce. As a result of root rot, 16, 11, and 6%, respectively, of dominant or codominant trees of the three species were killed or experienced premature windfall. Butt rot, which resulted from the upward extension of root rot into the boles of living trees, led to a scaled cull of 17, 12, and 10%, respectively, of gross merchantable volume of the remaining living trees in the three species. The total volume of wood lost to rot was, therefore, 33, 23, and 16%, respectively. Of 1108 living dominant and codominant balsam fir, 1243 black spruce, and 501 white spruce in 165 stands, 87, 68, and 63%, respectively, exhibited some degree of advanced root decay. Losses resulting from root rot increased with tree age. Significant amounts of root decay and stain (>30% of root volume) first occurred at 60 years of age in balsam fir and 80 years in black spruce and white spruce. For the three species together, the proportion of trees that were dead and windfallen as a result of root rot increased from an average of 3% at 41–50 years to 13% at 71–80 years and 26% at 101–110 years. The root rot index, based on the number of dead and windfallen trees and estimated loss of merchantable volume, also increased, from an average of 17 at 41–50 years to 40 at 71–80 years and 53 at 101–110 years. Death and windfall of balsam fir and black spruce were more common in northwestern Ontario than in northeastern Ontario. Damage to balsam fir was greater in the Great Lakes–St. Lawrence Forest region than in the Boreal Forest region. In all three tree species, the degree of root rot (decay and stain) was highly correlated with the number of dead and windfallen trees, stand age, and root decay at ground level (as a percentage of basal area) for a 10-tree sample.



2003 ◽  
Vol 28 (2) ◽  
pp. 216-218 ◽  
Author(s):  
Christopher H. Lusk ◽  
Carolina Jara ◽  
Teresa Parada


2015 ◽  
Vol 166 (6) ◽  
pp. 380-388 ◽  
Author(s):  
Pascale Weber ◽  
Caroline Heiri ◽  
Mathieu Lévesque ◽  
Tanja Sanders ◽  
Volodymyr Trotsiuk ◽  
...  

Growth potential and climate sensitivity of tree species in the ecogram for the colline and submontane zone In forestry practice a large amount of empirical knowledge exists about the productivity of individual tree species in relation to site properties. However, so far, only few scientific studies have investigated the influence of soil properties on the growth potential of various tree species along gradients of soil water as well as nutrient availability. Thus, there is a research gap to estimate the productivity and climate sensitivity of tree species under climate change, especially regarding productive sites and forest ad-mixtures in the lower elevations. Using what we call a «growth ecogram», we demonstrate species- and site-specific patterns of mean annual basal area increment and mean sensitivity of ring width (strength of year-to-year variation) for Fagus sylvatica, Quercus spp., Fraxinus excelsior, Picea abies, Abies alba and Pinus sylvestris, based on tree-ring data from 508 (co-)dominant trees on 27 locations. For beech, annual basal area increment ( average 1957–2006) was significantly correlated with tree height of the dominant sampling trees and proved itself as a possible alternative for assessing site quality. The fact that dominant trees of the different tree species showed partly similar growth potential within the same ecotype indicates comparable growth limitation by site conditions. Mean sensitivity of ring width – a measure of climate sensitivity – had decreased for oak and ash, while it had increased in pine. Beech showed diverging reactions with increasing sensitivity at productive sites (as measured by the C:N ratio of the topsoil), suggesting an increasing limitation by climate at these sites. Hence, we derive an important role of soil properties in the response of forests to climate change at lower elevations, which should be taken into account when estimating future forest productivity.



2005 ◽  
Vol 14 (2) ◽  
pp. 253 ◽  
Author(s):  
U. Diéguez-Aranda ◽  
F. Castedo Dorado ◽  
J. G. Álvarez González


2021 ◽  
Author(s):  
David Montwé ◽  
Audrey Standish ◽  
Miriam Isaac-Renton ◽  
Jodi Axelson

<p>Increasing frequency of severe drought events under climate change is a major cause for concern for millions of hectares of forested land. One practical solution to improving forest resilience may be thinning. There may be several potential benefits, chief of which is that drought tolerance could be improved in the remaining trees due to lower competition for resources and increased precipitation throughfall. By improving resilience to drought, this may increase productivity of the remaining trees while lowering risks of mortality. Such potential benefits can effectively be quantified with data from statistically-sound, long-term field experiments, and tree rings provide a suitable avenue to compare treatments. We work with an experiment that applied different levels of tree retention to mature interior Douglas fir (<em>Pseudotsuga menziesii</em> var. <em>glauca</em>) in a dry ecosystem of western Canada. The treatments were applied in the winter of 2002/2003, coinciding with the aftermath of a severe natural drought event in 2002. We used tree-rings to quantify the extent to which thinning improves recovery and resilience of treated trees as compared to non-thinned controls. Tree-ring samples as well as height and diameter data were obtained from 83 trees from 8 treatment units of the randomized experimental design. Indicators for resilience to drought were calculated based on basal area increments. Thinning substantially increased basal area increments at the individual tree level, but more importantly, led to significantly higher recovery and resilience relative to the control. The results of this tree-ring analysis suggest that thinning may be a viable silvicultural intervention to counteract effects of severe drought events and to maintain tree cover.</p>



Author(s):  
Glenn Patrick Juday ◽  
Valerie Barber

The two most important life functions that organisms carry out to persist in the environment are reproduction and growth. In this chapter we examine the role of climate and climate variability as controlling factors in the growth of one of the most important and productive of the North American boreal forest tree species, white spruce (Picea glauca [Moench] Voss). Because the relationship between climate and tree growth is so close, tree-ring properties have been used successfully for many years as a proxy to reconstruct past climates. Our recent reconstruction of nineteenth- century summer temperatures at Fairbanks based on white spruce tree-ring characteristics (Barber et al. in press) reveals a fundamental pattern of quasi-decadal climate variability. The values in this reconstruction of nineteenth-century Fairbanks summer temperatures are surprisingly warm compared to values in much of the published paleoclimatic literature for boreal North America. In this chapter we compare our temperature reconstructions with ring-width records in northern and south-central Alaska to see whether tree-growth signals in the nineteenth century in those regions are consistent with tree-ring characteristics in and near Bonanza Creek (BNZ) LTER (25 km southwest of Fairbanks) that suggest warm temperatures during the mid-nineteenth century. We also present a conceptual model of key limiting events in white spruce reproduction and compare it to a 39-year record of seed fall at BNZ. Finally, we derive a radial growth pattern index from white spruce at nine stands across Interior Alaska that matches recent major seed crop events in the BNZ monitoring period, and we identify dates after 1800 when major seed crops of white spruce, which are infrequent, may have been produced. The boreal region is characterized by a broad zone of forest with a continuous distribution across Eurasia and North America, amounting to about 17% of the earth’s land surface area (Bonan et al. 1992). The boreal region is often conceived of as a zone of relatively homogenous climate, but in fact a surprising diversity of climates are present. During the long days of summer, continental interior locations under persistent high-pressure systems experience hot weather that can promote extensive forest fires frequently exceeding 100 kilohectares (K ha). Summer daily maximum temperatures are cooled to a considerable degree in maritime portions of the boreal region affected by air masses that originate over the North Atlantic, North Pacific, or Arctic Oceans.



Radiocarbon ◽  
2019 ◽  
Vol 62 (2) ◽  
pp. 497-502
Author(s):  
Barbara Sensuła ◽  
Natalia Piotrowska

ABSTRACTIn this paper we present data from the measurements of carbon isotopes (Δ14C and δ13C) from α-cellulose extracted from pine tree-rings. The samples were collected in four forests located in the most industrialized part of Poland, where coal mining and coal-based energy are an important branch of industry. The investigated period of time (1975–2012) covers the period of development in coal mining and other industry sectors. Stable isotope composition has been determined with using IRMS and radiocarbon concentration was determinate by AMS.



Sign in / Sign up

Export Citation Format

Share Document