scholarly journals Scavenging in the Anthropocene: Human impact drives vertebrate scavenger species richness at a global scale

2019 ◽  
Vol 25 (9) ◽  
pp. 3005-3017 ◽  
Author(s):  
Esther Sebastián‐González ◽  
Jomar Magalhães Barbosa ◽  
Juan M. Pérez‐García ◽  
Zebensui Morales‐Reyes ◽  
Francisco Botella ◽  
...  
2020 ◽  
Author(s):  
E Sebastián-González ◽  
JM Barbosa ◽  
JM Pérez-García ◽  
Z Morales-Reyes ◽  
F Botella ◽  
...  

© 2019 John Wiley & Sons Ltd Understanding the distribution of biodiversity across the Earth is one of the most challenging questions in biology. Much research has been directed at explaining the species latitudinal pattern showing that communities are richer in tropical areas; however, despite decades of research, a general consensus has not yet emerged. In addition, global biodiversity patterns are being rapidly altered by human activities. Here, we aim to describe large-scale patterns of species richness and diversity in terrestrial vertebrate scavenger (carrion-consuming) assemblages, which provide key ecosystem functions and services. We used a worldwide dataset comprising 43 sites, where vertebrate scavenger assemblages were identified using 2,485 carcasses monitored between 1991 and 2018. First, we evaluated how scavenger richness (number of species) and diversity (Shannon diversity index) varied among seasons (cold vs. warm, wet vs. dry). Then, we studied the potential effects of human impact and a set of macroecological variables related to climatic conditions on the scavenger assemblages. Vertebrate scavenger richness ranged from species-poor to species rich assemblages (4–30 species). Both scavenger richness and diversity also showed some seasonal variation. However, in general, climatic variables did not drive latitudinal patterns, as scavenger richness and diversity were not affected by temperature or rainfall. Rainfall seasonality slightly increased the number of species in the community, but its effect was weak. Instead, the human impact index included in our study was the main predictor of scavenger richness. Scavenger assemblages in highly human-impacted areas sustained the smallest number of scavenger species, suggesting human activity may be overriding other macroecological processes in shaping scavenger communities. Our results highlight the effect of human impact at a global scale. As species-rich assemblages tend to be more functional, we warn about possible reductions in ecosystem functions and the services provided by scavengers in human-dominated landscapes in the Anthropocene.


2020 ◽  
Author(s):  
E Sebastián-González ◽  
JM Barbosa ◽  
JM Pérez-García ◽  
Z Morales-Reyes ◽  
F Botella ◽  
...  

© 2019 John Wiley & Sons Ltd Understanding the distribution of biodiversity across the Earth is one of the most challenging questions in biology. Much research has been directed at explaining the species latitudinal pattern showing that communities are richer in tropical areas; however, despite decades of research, a general consensus has not yet emerged. In addition, global biodiversity patterns are being rapidly altered by human activities. Here, we aim to describe large-scale patterns of species richness and diversity in terrestrial vertebrate scavenger (carrion-consuming) assemblages, which provide key ecosystem functions and services. We used a worldwide dataset comprising 43 sites, where vertebrate scavenger assemblages were identified using 2,485 carcasses monitored between 1991 and 2018. First, we evaluated how scavenger richness (number of species) and diversity (Shannon diversity index) varied among seasons (cold vs. warm, wet vs. dry). Then, we studied the potential effects of human impact and a set of macroecological variables related to climatic conditions on the scavenger assemblages. Vertebrate scavenger richness ranged from species-poor to species rich assemblages (4–30 species). Both scavenger richness and diversity also showed some seasonal variation. However, in general, climatic variables did not drive latitudinal patterns, as scavenger richness and diversity were not affected by temperature or rainfall. Rainfall seasonality slightly increased the number of species in the community, but its effect was weak. Instead, the human impact index included in our study was the main predictor of scavenger richness. Scavenger assemblages in highly human-impacted areas sustained the smallest number of scavenger species, suggesting human activity may be overriding other macroecological processes in shaping scavenger communities. Our results highlight the effect of human impact at a global scale. As species-rich assemblages tend to be more functional, we warn about possible reductions in ecosystem functions and the services provided by scavengers in human-dominated landscapes in the Anthropocene.


Taxon ◽  
2018 ◽  
Vol 67 (5) ◽  
pp. 836-870 ◽  
Author(s):  
Nicolas Magain ◽  
Camille Tniong ◽  
Trevor Goward ◽  
Dongling Niu ◽  
Bernard Goffinet ◽  
...  

2015 ◽  
Vol 24 (7) ◽  
pp. 814-825 ◽  
Author(s):  
Uri Roll ◽  
Eli Geffen ◽  
Yoram Yom-Tov

Paleobiology ◽  
1997 ◽  
Vol 23 (4) ◽  
pp. 410-419 ◽  
Author(s):  
Arnold I. Miller

Although available paleobiological data indicate that the geographic ranges of marine species are maintained throughout their entire observable durations, other evidence suggests, by contrast, that the ranges of higher taxa expand as they age, perhaps in association with increased species richness. Here, I utilize a database of Ordovician genus occurrences collected from the literature for several paleocontinents to demonstrate that a significant aging of the global biota during the Ordovician Radiation was accompanied by a geographic and environmental expansion of genus ranges. The proportion of genera occurring in two or more paleocontinents in the database, and two or more environmental zones within a six-zone onshore-offshore framework, increased significantly in the Caradocian and Ashgillian. Moreover, widespread genera tended to be significantly older than their endemic counterparts, suggesting a direct link between their ages and their environmental and geographic extents. Expansion in association with aging was corroborated further by demonstrating this pattern directly among genera that ranged from the Tremadocian through the Ashgillian. Taken together, these results are significant not only for what they reveal about the kinetics of a major, global-scale diversification, but also for what they suggest about the interpretation of relationships between diversity trends at the α (within-community) and β (between-community) levels.


Author(s):  
O. A. Davydov ◽  
O. V. Kravtsova

The paper considers the findings of studies on ecological-morphological structure of microphytobenthos in Telbin Lake located in the residential community of Kyiv city. The research study aimed to distinguish ecological-morphological groups of algae in microphytobenthos of the human-impacted waterbody within the urban area and to evaluate the role of microphytobenthos structural components in forming a certain type of algal community. Microphytobenthos was sampled with the MB-TE microbenthometer within the littoral area at aquatic-vegetation-free sites and within the deep-water area of the lake. Algae sampling and laboratory processing of samples were performed in accordance with the methods generally accepted in hydrobiology. For diatoms identification permanent slides were made with special high-resolution mounting media. Ecological-morphological groups of benthic algae were distinguished considering the habitats of algae. The relative share in the microphytobenthos species richness was calculated for each group. The degree of human impact on the lake ecosystem was evaluated according to the proven method, consisting in distinguishing the total number of factors, which most frequently affect the lake ecosystem. The findings of studies on the ecological-morphological structure of microphytobenthos in Telbin Lake have made it possible to distinguish 7 ecological-morphological groups of algae. The species richness is mainly formed by periphytont and plankton, and benthonts are for the most part represented by the ecological-morphological group of eurytopic littoral diatoms. In the high-degree human impact waterbody (8 points) the share of benthonts’ major ecological-morphological groups in the species richness decreases in 1.6–2 times, and the shares of periphyton and plankton increase 1.3–2-fold respectively, as compared with low-degree human impact waterbody (3 points). The resulting unstable algal community consisting mainly of species getting to the lake bottom from other habitats is defined as algal aggregation, which is indicative of unfavorable conditions for residential algal flora development. Various waterbodies of Ukraine can differ significantly in the environmental variables playing a determining role in microphytobenthos structure and abundance. Microphytobenthos may act as a reliable biological indicator of aquatic ecosystem’s disturbance caused by human pressure upon waterbodies, responding to such pressure with the transformation of its structural elements. For several waterbodies of Ukraine detailed analysis of microphytobenthos ecological-morphological structure made it possible to characterize bottom algal communities and to distinguish algal cenoses, which allowed to assess ecological state deterioration in different areas of the waterbodies under study. The information on the microphytobenthos structural components of urban lakes is scarce. Therefore, studying the ecological-morphological structure of microphytobenthos in various waterbodies within Kyiv city is of high importance.


2009 ◽  
Vol 12 ◽  
pp. 1-35 ◽  
Author(s):  
Michael Richter ◽  
Karl-Heinz Diertl ◽  
Paul Emck ◽  
Thorsten Peters ◽  
Erwin Beck

Long-term field studies in the scope of a multidisciplinary project in southern Ecuador revealed extraordinary high species numbers of many organismic groups. This article discusses reasons for the outstanding vascular plant diversity using a hierarchical scale-oriented top-down approach (Grüninger 2005), from the global scale to the local microscale. The global scale explains general (paleo-) ecological factors valid for most parts of the humid tropics, addressing various hypotheses and theories, such as the "greater effective evolutionary time", constant input of "accidentals", the "seasonal variability hypothesis", the "intermediate disturbance hypothesis", and the impact of soil fertility. The macroscale focuses on the Andes in northwestern South America. The tropical Andes are characterised by many taxa of restricted range which is particularly true for the Amotape-Huancabamba region, i.e. the so called Andean Depression, which is effective as discrete phytogeographic transition as well as barrier zone. Interdigitation of northern and southern flora elements, habitat fragmentation, geological and landscape history, and a high speciation rate due to rapid genetic radiation of some taxa contribute to a high degree of diversification. The mesoscale deals with the special environmental features of the eastern mountain range, the Cordillera Real and surrounding areas in southern Ecuador. Various climatic characteristics, the orographic heterogeneity, the geologic and edaphic conditions as well as human impact are the most prominent factors augmenting plant species diversity. On microscale, prevailing regimes of disturbance and environmental stresses, the orographic basement, as well as the general role on the various mountain chains are considered. Here, micro-habitats e.g. niches for epiphytes, effects of micro-relief patterns, and successions after small-sized disturbance events are screened. Direct effects of human impact are addressed and a perspective of possible effects of climate change on plant diversity is presented.


2020 ◽  
Vol 117 (39) ◽  
pp. 24345-24351 ◽  
Author(s):  
Enrique Valencia ◽  
Francesco de Bello ◽  
Thomas Galland ◽  
Peter B. Adler ◽  
Jan Lepš ◽  
...  

The stability of ecological communities is critical for the stable provisioning of ecosystem services, such as food and forage production, carbon sequestration, and soil fertility. Greater biodiversity is expected to enhance stability across years by decreasing synchrony among species, but the drivers of stability in nature remain poorly resolved. Our analysis of time series from 79 datasets across the world showed that stability was associated more strongly with the degree of synchrony among dominant species than with species richness. The relatively weak influence of species richness is consistent with theory predicting that the effect of richness on stability weakens when synchrony is higher than expected under random fluctuations, which was the case in most communities. Land management, nutrient addition, and climate change treatments had relatively weak and varying effects on stability, modifying how species richness, synchrony, and stability interact. Our results demonstrate the prevalence of biotic drivers on ecosystem stability, with the potential for environmental drivers to alter the intricate relationship among richness, synchrony, and stability.


2022 ◽  
pp. 14-26
Author(s):  
Regina A. Christen

Wetlands perform critical ecological functions and provide wildlife habitats. Yet, wetland degradation continues at a global scale. In Massachusetts, USA, wetland restoration has reached remarkable heights, partly promoted by the retirement of cranberry bogs. In this study, to assess the effectiveness of cranberry-farm restoration for conservation of native herpetofauna, we surveyed both retired and restored cranberry bogs in south-eastern Massachusetts. Using both visual encounter surveys and baited aquatic traps, we documented herpetofaunal species and their relative abundance. Both survey methods combined, the cumulative herpetofaunal species richness at the restored bogs (16) exceeded that of the retired bogs (11). Our trap surveys indicated that the amphibian species richness at the retired bog was significantly greater than that of the restored bog. In contrast, reptilian species richness as well as the relative abundance of both amphibians and reptiles were significantly greater at the restored bog compared to the retired bog. Subsequent analyses we performed identified that greater habitat heterogeneity emerging from active restoration intervention was the underlying driver of elevated richness and abundance. Most frequently encountered herpetofauna at the restored versus retired bogs were habitat generalists with broader geographic ranges and are not of conservation concern. Our findings suggest that the restored bog we monitored is still in the early-recovery phase after active intervention. We urge the need for long-term herpetofaunal inventories via systematic, standard surveys to assess restoration success.


Author(s):  
Andrew S. Cohen

Reconstructing climatic change is perhaps the single most common application of paleolimnology. Paleoclimatology is a vast subject, and several entire books have been written on this subject alone (e.g., Crowley and North, 1991; Parrish, 1998; Bradley, 1999). Here we can only touch on some of the more important, interesting, and controversial aspects of climate history that are potentially recorded in lake sediments. As with human impact histories, archives of paleoclimate from individual lakes record responses from both local and regional events (e.g., Giraudi, 1998); teasing the two apart from a single basin often poses a difficult problem. In order to differentiate regional from global-scale changes in climate from lake deposits, it is also necessary that local influences on hydrology, such as drainage diversions, or changes in groundwater flow fields unrelated to climate, be understood. The problem of identifying regionally significant events becomes even more acute when the goals are to assess the rate at which climate changed from lake records or to assess the synchroneity of events between locations. All of these issues accentuate the importance of excellent geochronometry for paleoclimatic interpretation. Also, biological or physical mixing of sediments in any individual core record may mislead us into thinking a change was gradual when in fact it was rapid, whereas unrecognized small-scale unconformities in a single core could mislead us in the opposite direction (Dominik et al., 1992). Conversely, some lakes act to amplify climatic signals, particularly when they cross a threshold of limnological response to some climate variable (for example the transition from closed to open-lake conditions that might accompany an increasing precipitation:evaporation ratio). In this case a ‘‘gradual’’ climatic process might appear rapid from its depositional record. As with human impact studies, a common solution to these problems is to use a comparative-lake and/or comparative-indicator approach, identifying coherent patterns of change in indicators of precipitation, temperature, windiness, or other climate variables of interest throughout a region. This can be done using many of the types of biotic, geochemical, geophysical, or geomorphic indicators we have discussed in chapters 7–11.


Sign in / Sign up

Export Citation Format

Share Document