Multi‐model projections of tree species performance in Quebec, Canada under future climate change

2021 ◽  
Author(s):  
Boulanger Yan ◽  
Jesus Pascual ◽  
Mathieu Bouchard ◽  
Loïc D’Orangeville ◽  
Catherine Périé ◽  
...  
Author(s):  
Andrew V. Gougherty ◽  
Stephen R. Keller ◽  
Vikram E. Chhatre ◽  
Matthew C. Fitzpatrick

ABSTRACTA central challenge to predicting climate change effects on biodiversity is integrating information on intraspecific variation, specifically population-level local adaptation to climate. Assessing how climate change could disrupt local adaptation to climate can provide a new way of understanding population risk and vulnerability to climate change. For the wide-ranging boreal tree species, balsam poplar (Populus balsamifera L.), we used models of existing population-level genetic differentiation to estimate three key components of population’s vulnerability to climate change: (1) predicted shifts in genetic composition with and without migration, (2) the potential for future novel gene-climate associations, and (3) the distance populations would need to migrate to minimize future maladaptation. When assessed across the range of balsam poplar, these three metrics suggest that vulnerability to climate change is greatest in the eastern portion of balsam poplar’s range, where future maladaptation peaked, migration distances to sites that minimized maladaptation were greatest, and the emergence of novel gene-climate associations were highest. Our results further suggest greater maladaptation to climate when migration distances were limited – consistent with the possibility of migration to lessen maladaptation to future climate. Our work provides a comprehensive evaluation of population’s vulnerability to climate change by simultaneously assessing population maladaptation to future climate and the distances populations would need to migrate to minimize maladaptation, in a way that goes beyond species-level bioclimatic modelling. In doing so, our work helps advance towards the long-held goal of incorporating genomic information in models of species responses to climate change.


2020 ◽  
Vol 116 ◽  
pp. 106477
Author(s):  
Monique Bohora Schlickmann ◽  
Ana Carolina da Silva ◽  
Luciana Magda de Oliveira ◽  
Dianyne Oliveira Matteucci ◽  
Felipe Domingos Machado ◽  
...  

Science ◽  
2020 ◽  
Vol 368 (6488) ◽  
pp. 261-266 ◽  
Author(s):  
Timothy J. Brodribb ◽  
Jennifer Powers ◽  
Hervé Cochard ◽  
Brendan Choat

Trees are the living foundations on which most terrestrial biodiversity is built. Central to the success of trees are their woody bodies, which connect their elevated photosynthetic canopies with the essential belowground activities of water and nutrient acquisition. The slow construction of these carbon-dense, woody skeletons leads to a slow generation time, leaving trees and forests highly susceptible to rapid changes in climate. Other long-lived, sessile organisms such as corals appear to be poorly equipped to survive rapid changes, which raises questions about the vulnerability of contemporary forests to future climate change. The emerging view that, similar to corals, tree species have rather inflexible damage thresholds, particularly in terms of water stress, is especially concerning. This Review examines recent progress in our understanding of how the future looks for forests growing in a hotter and drier atmosphere.


2014 ◽  
Vol 15 (4) ◽  
pp. 683-693 ◽  
Author(s):  
Nima Raghunathan ◽  
Louis François ◽  
Marie-Claude Huynen ◽  
Leonardo C. Oliveira ◽  
Alain Hambuckers

2020 ◽  
Vol 44 ◽  
Author(s):  
Guilherme Neto dos Santos ◽  
Ana Carolina da Silva ◽  
Pedro Higuchi

ABSTRACT The cloud forests are threatened due to the climate change process. Investigations seeking to predict how future climate change will affect species are of great importance as they are fundamental to generating conservation strategies. We aimed to detect how climate change affects the potential geographical distribution of Drimys angustifolia Miers, a tree species that is an indicator of the upper-montane cloud forest in the Brazilian subtropical Atlantic Forest. The areas where D. angustifolia occurs were obtained from geographic coordinates available in scientific publications and the Global Biodiversity Information database. For climate niche modeling, we used the maximum entropy algorithm with 19 climate variables. Two climate change scenarios were considered for 2061-2080: one of low and one of high impact. D. angustifolia predominantly occurs in the upper-montane forests and is absent from dry and warm sites. The variables that best explained the D. angustifolia climatic niche were mean temperature of the warmest quarter, precipitation of driest month, and precipitation of the warmest quarter. Both scenarios indicated changes towards a more tropical regional future climate. Under the low impact climate change scenario, D. angustifolia coverage declined by 68.24% (± 7.32%) across its area of potential occurrence; it declined by 79.15% (± 9.65%) under the high impact scenario. In conclusion, the results of the present study showed that D. angustifolia and its associated ecosystem are threatened by the potential impacts of future climate change. Consequently, we highlight climatically stable areas for the occurrence of D. angustifolia, such as those located in the highest parts of the mountain ranges of the southern and southeastern regions of Brazil, which should be considered as priority areas for protection and conservation.


2006 ◽  
Vol 106 (3) ◽  
pp. 323-334 ◽  
Author(s):  
Michael B. Jones ◽  
Alison Donnelly ◽  
Fabrizio Albanito

2002 ◽  
Vol 19 ◽  
pp. 179-192 ◽  
Author(s):  
M Lal ◽  
H Harasawa ◽  
K Takahashi

Sign in / Sign up

Export Citation Format

Share Document