scholarly journals Island Mammal Extinctions are Determined by Interactive Effects of Life History, Island Biogeography, Mesopredator Suppression

2021 ◽  
Vol 30 (12) ◽  
pp. 2515-2519
2019 ◽  
Vol 7 (1) ◽  
Author(s):  
Daniel E Winkler ◽  
Michelle Yu-Chan Lin ◽  
José Delgadillo ◽  
Kenneth J Chapin ◽  
Travis E Huxman

We studied how a rare, endemic alpine cushion plant responds to the interactive effects of warming and drought. Overall, we found that both drought and warming negatively influenced the species growth but that existing levels of phenotypic variation may be enough to at least temporarily buffer populations.


2011 ◽  
Vol 8 (3) ◽  
pp. 465-468 ◽  
Author(s):  
Krijn P. Paaijmans ◽  
Simon Blanford ◽  
Brian H. K. Chan ◽  
Matthew B. Thomas

The development rate of parasites and pathogens within vectors typically increases with temperature. Accordingly, transmission intensity is generally assumed to be higher under warmer conditions. However, development is only one component of parasite/pathogen life history and there has been little research exploring the temperature sensitivity of other traits that contribute to transmission intensity. Here, using a rodent malaria, we show that vector competence (the maximum proportion of infectious mosquitoes, which implicitly includes parasite survival across the incubation period) tails off at higher temperatures, even though parasite development rate increases. We also show that the standard measure of the parasite incubation period (i.e. time until the first mosquitoes within a cohort become infectious following an infected blood-meal) is incomplete because parasite development follows a cumulative distribution, which itself varies with temperature. Including these effects in a simple model dramatically alters estimates of transmission intensity and reduces the optimum temperature for transmission. These results highlight the need to understand the interactive effects of environmental temperature on multiple host-disease life-history traits and challenge the assumptions of many current disease models that ignore this complexity.


2018 ◽  
Vol 12 (9) ◽  
pp. 2211-2224 ◽  
Author(s):  
John Davison ◽  
Mari Moora ◽  
Maarja Öpik ◽  
Leho Ainsaar ◽  
Marc Ducousso ◽  
...  

2010 ◽  
Vol 278 (1710) ◽  
pp. 1329-1338 ◽  
Author(s):  
Tien Ming Lee ◽  
Walter Jetz

Extinction risk varies across species and space owing to the combined and interactive effects of ecology/life history and geography. For predictive conservation science to be effective, large datasets and integrative models that quantify the relative importance of potential factors and separate rapidly changing from relatively static threat drivers are urgently required. Here, we integrate and map in space the relative and joint effects of key correlates of The International Union for Conservation of Nature-assessed extinction risk for 8700 living birds. Extinction risk varies significantly with species' broad-scale environmental niche, geographical range size, and life-history and ecological traits such as body size, developmental mode, primary diet and foraging height. Even at this broad scale, simple quantifications of past human encroachment across species' ranges emerge as key in predicting extinction risk, supporting the use of land-cover change projections for estimating future threat in an integrative setting. A final joint model explains much of the interspecific variation in extinction risk and provides a remarkably strong prediction of its observed global geography. Our approach unravels the species-level structure underlying geographical gradients in extinction risk and offers a means of disentangling static from changing components of current and future threat. This reconciliation of intrinsic and extrinsic, and of past and future extinction risk factors may offer a critical step towards a more continuous, forward-looking assessment of species' threat status based on geographically explicit environmental change projections, potentially advancing global predictive conservation science.


Author(s):  
Lisandrina Mari ◽  
Martin Daufresne ◽  
Jean Guillard ◽  
Guillaume Evanno ◽  
Emilien Lasne

The combination of global warming and local stressors can have dramatic consequences on freshwater biota. Sediment deposition is an important pressure that can affect benthic species and benthic ontogenetic stages (eggs and larvae) habitat quality. However, knowledge on the effects of sediment in a warming context is lacking. We used a common garden approach to examine the effects of combined exposure to elevated temperature and deposited sediment on early life history traits in offspring of four wild arctic charr (Salvelinus alpinus) populations, originating from geographically isolated lakes at the Southern edge of the species range. We report interactive effects of temperature and sediment, with higher temperature exacerbating the negative effects of sediments on the duration of the incubation period and on the body size-yolk expenditure trade-off during development. Our results highlight that reevaluating the impacts of sediment on organisms under the lens of global warming and at the scale of several wild populations is needed to improve our understanding of how vulnerable species can respond to environmental changes.


Sign in / Sign up

Export Citation Format

Share Document