Glucolipids and lipoteichoic acids affect the activity of SigI, an alternative sigma factor, and WalKR, an essential two‐component system, in Bacillus subtilis .

2021 ◽  
Author(s):  
Satoshi Matsuoka ◽  
Yoko Shimizu ◽  
Kaori Nobe ◽  
Kouji Matsumoto ◽  
Kei Asai ◽  
...  
Microbiology ◽  
2003 ◽  
Vol 149 (9) ◽  
pp. 2331-2343 ◽  
Author(s):  
Thierry Doan ◽  
Pascale Servant ◽  
Shigeo Tojo ◽  
Hirotake Yamaguchi ◽  
Guillaume Lerondel ◽  
...  

A transcriptome comparison of a wild-type Bacillus subtilis strain growing under glycolytic or gluconeogenic conditions was performed. In particular, it revealed that the ywkA gene, one of the four paralogues putatively encoding a malic enzyme, was more transcribed during gluconeogenesis. Using a lacZ reporter fusion to the ywkA promoter, it was shown that ywkA was specifically induced by external malate and not subject to glucose catabolite repression. Northern analysis confirmed this expression pattern and demonstrated that ywkA is cotranscribed with the downstream ywkB gene. The ywkA gene product was purified and biochemical studies demonstrated its malic enzyme activity, which was 10-fold higher with NAD than with NADP (k cat/K m 102 and 10 s−1 mM−1, respectively). However, physiological tests with single and multiple mutant strains affected in ywkA and/or in ywkA paralogues showed that ywkA does not contribute to efficient utilization of malate for growth. Transposon mutagenesis allowed the identification of the uncharacterized YufL/YufM two-component system as being responsible for the control of ywkA expression. Genetic analysis and in vitro studies with purified YufM protein showed that YufM binds just upstream of ywkA promoter and activates ywkA transcription in response to the presence of malate in the extracellular medium, transmitted by YufL. ywkA and yufL/yufM could thus be renamed maeA for malic enzyme and malK/malR for malate kinase sensor/malate response regulator, respectively.


2018 ◽  
Vol 17 (1) ◽  
pp. 149-157 ◽  
Author(s):  
Qing-gang GUO ◽  
Li-hong DONG ◽  
Pei-pei WANG ◽  
She-zeng LI ◽  
Wei-song ZHAO ◽  
...  

2006 ◽  
Vol 260 (2) ◽  
pp. 224-231 ◽  
Author(s):  
Guillermo D. Repizo ◽  
Víctor S. Blancato ◽  
Pablo D. Sender ◽  
Juke Lolkema ◽  
Christian Magni

2002 ◽  
Vol 184 (22) ◽  
pp. 6395-6402 ◽  
Author(s):  
Carsten L. Beckering ◽  
Leif Steil ◽  
Michael H. W. Weber ◽  
Uwe Völker ◽  
Mohamed A. Marahiel

ABSTRACT Previous studies with two-dimensional gel electrophoresis techniques revealed that the cold shock response in Bacillus subtilis is characterized by rapid induction and accumulation of two classes of specific proteins, which have been termed cold-induced proteins (CIPs) and cold acclimatization proteins (CAPs), respectively. Only recently, the B. subtilis two-component system encoded by the desKR operon has been demonstrated to be essential for the cold-induced expression of the lipid-modifying desaturase Des, which is required for efficient cold adaptation of the membrane in the absence of isoleucine. At present, one of the most intriguing questions in this research field is whether DesKR plays a global role in cold signal perception and transduction in B. subtilis. In this report, we present the first genomewide transcriptional analysis of a cold-exposed bacterium and demonstrate that the B. subtilis two-component system DesKR exclusively controls the desaturase gene des and is not the cold-triggered regulatory system of global relevance. In addition to this, we identified a set of genes that might participate as novel players in the cold shock adaptation of B. subtilis. Two cold-induced genes, the elongation factor homolog ylaG and the σL-dependent transcriptional activator homolog yplP, have been examined by construction and analysis of deletion mutants.


PLoS ONE ◽  
2013 ◽  
Vol 8 (1) ◽  
pp. e53457 ◽  
Author(s):  
Sara Kesel ◽  
Andreas Mader ◽  
Carolin Höfler ◽  
Thorsten Mascher ◽  
Madeleine Leisner

2011 ◽  
Vol 39 (5) ◽  
pp. 362-366 ◽  
Author(s):  
L.M. Bredeston ◽  
D. Marciano ◽  
D. Albanesi ◽  
D. De Mendoza ◽  
J. M. Delfino

Sign in / Sign up

Export Citation Format

Share Document