alternative sigma factor
Recently Published Documents


TOTAL DOCUMENTS

197
(FIVE YEARS 24)

H-INDEX

54
(FIVE YEARS 2)

2022 ◽  
Vol 12 ◽  
Author(s):  
Yehong Huang ◽  
Wurihan Wurihan ◽  
Bin Lu ◽  
Yi Zou ◽  
Yuxuan Wang ◽  
...  

Cells reprogram their transcriptome in response to stress, such as heat shock. In free-living bacteria, the transcriptomic reprogramming is mediated by increased DNA-binding activity of heat shock sigma factors and activation of genes normally repressed by heat-induced transcription factors. In this study, we performed transcriptomic analyses to investigate heat shock response in the obligate intracellular bacterium Chlamydia trachomatis, whose genome encodes only three sigma factors and a single heat-induced transcription factor. Nearly one-third of C. trachomatis genes showed statistically significant (≥1.5-fold) expression changes 30 min after shifting from 37 to 45°C. Notably, chromosomal genes encoding chaperones, energy metabolism enzymes, type III secretion proteins, as well as most plasmid-encoded genes, were differentially upregulated. In contrast, genes with functions in protein synthesis were disproportionately downregulated. These findings suggest that facilitating protein folding, increasing energy production, manipulating host activities, upregulating plasmid-encoded gene expression, and decreasing general protein synthesis helps facilitate C. trachomatis survival under stress. In addition to relieving negative regulation by the heat-inducible transcriptional repressor HrcA, heat shock upregulated the chlamydial primary sigma factor σ66 and an alternative sigma factor σ28. Interestingly, we show for the first time that heat shock downregulates the other alternative sigma factor σ54 in a bacterium. Downregulation of σ54 was accompanied by increased expression of the σ54 RNA polymerase activator AtoC, thus suggesting a unique regulatory mechanism for reestablishing normal expression of select σ54 target genes. Taken together, our findings reveal that C. trachomatis utilizes multiple novel survival strategies to cope with environmental stress and even to replicate. Future strategies that can specifically target and disrupt Chlamydia’s heat shock response will likely be of therapeutic value.


2021 ◽  
Author(s):  
Rakesh Kumar Singh ◽  
Lav Kumar Jaiswal ◽  
Tanmayee Nayak ◽  
Ravindra Singh Rawat ◽  
Sanjit Kumar ◽  
...  

Abstract Sigma factor B (SigB), an alternative sigma factor (ASF) is very similar to primary sigma factor SigA (σ70) but dispensable for growth in both Mycobacterium smegmatis (Msmeg) and Mycobacterium tuberculosis (Mtb). It is involved in general stress responses including heat, oxidative, surface, starvation stress and macrophage infections. Despite having an extremely short half-life, SigB tends to operate downstream of at least three stress-responsive Extra Cytoplasmic Function (ECF) sigma factors (SigH, SigE, SigL) and SigF involved in multiple signalling pathways. There is very little information available regarding the regulation of SigB sigma factor and its interacting protein partners. Hence, we cloned the SigB gene into pET28a vector and optimized its expression in three different strains of E. coli, viz; (BL21(DE3), C41(DE3) and CodonPlus(DE3)). We also optimized several other parameters for the expression of recombinant SigB including IPTG concentration, temperature, and time-duration. We achieved the maximum expression of SigB at 25 °C in the soluble fraction of the cell which was purified by affinity chromatography using Ni-NTA and further confirmed by Western blotting. Further, structural characterization demonstrates the instability of SigB in comparison to SigA is carried out using homology modelling and structure function relationship. We have done protein-protein docking of RNA polymerase (RNAP) of Mycobacterium smegmatis (Msmeg) and sigB. This effort provides a platform for pulldown assay, structural and other studies with the recombinant protein to deduce the SigB interacting proteins, which might pave the way to study its signalling networks along with its regulation.


Agronomy ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 1787
Author(s):  
Meryem Belfquih ◽  
Ilham Sakrouhi ◽  
Hassan Ait-Benhassou ◽  
Emeric Dubois ◽  
Dany Severac ◽  
...  

The recently proposed species Ensifer aridi represents an interesting model to study adaptive mechanisms explaining its maintenance under stressful pedo-climatic conditions. To get insights into functions associated with hyperosmotic stress adaptation in E. aridi, we first performed RNAseq profiling of cells grown under sub-lethal stresses applied by permeating (NaCl) and non-permeating (PEG8000) solutes that were compared to a transcriptome from unstressed bacteria. Then an a priori approach, consisting of targeted mutagenesis of the gene encoding alternative sigma factor (rpoE2), involved in the General Stress Response combined with phenotyping and promoter gfp fusion-based reporter assays of selected genes was carried out to examine the involvement of rpoE2 in symbiosis and stress response. The majority of motility and chemotaxis genes were repressed by both stresses. Results also suggest accumulation of compatible solute trehalose under stress and other metabolisms such as inositol catabolism or the methionine cycling-generating S-adenosyl methionine appears strongly induced notably under salt stress. Interestingly, many functions regulated by salt were shown to favor competitiveness for nodulation in other rhizobia, supporting a role of stress genes for proper symbiosis’ development and functioning. However, despite activation of the general stress response and identification of several genes possibly under its control, our data suggest that rpoE2 was not essential for stress tolerance and symbiosis’ development, indicating that E. aridi possesses alternative regulatory mechanisms to adapt and respond to stressful environments.


2021 ◽  
Vol 17 (7) ◽  
Author(s):  
Christian P Schwall ◽  
Torkel E Loman ◽  
Bruno M C Martins ◽  
Sandra Cortijo ◽  
Casandra Villava ◽  
...  

mBio ◽  
2021 ◽  
Vol 12 (3) ◽  
Author(s):  
Erica C. Keffeler ◽  
Vijayalakshmi S. Iyer ◽  
Srivatsan Parthasarathy ◽  
Matthew M. Ramsey ◽  
Matthew J. Gorman ◽  
...  

ABSTRACT The alternative sigma factor σ54 has been shown to regulate the expression of a wide array of virulence-associated genes, as well as central metabolism, in bacterial pathogens. In Gram-positive organisms, the σ54 is commonly associated with carbon metabolism. In this study, we show that the Enterococcus faecalis alternative sigma factor σ54 (RpoN) and its cognate enhancer binding protein MptR are essential for mannose utilization and are primary contributors to glucose uptake through the Mpt phosphotransferase system. To gain further insight into how RpoN contributes to global transcriptional changes, we performed microarray transcriptional analysis of strain V583 and an isogenic rpoN mutant grown in a chemically defined medium with glucose as the sole carbon source. Transcripts of 340 genes were differentially affected in the rpoN mutant; the predicted functions of these genes mainly related to nutrient acquisition. These differentially expressed genes included those with predicted catabolite-responsive element (cre) sites, consistent with loss of repression by the major carbon catabolite repressor CcpA. To determine if the inability to efficiently metabolize glucose/mannose affected infection outcome, we utilized two distinct infection models. We found that the rpoN mutant is significantly attenuated in both rabbit endocarditis and murine catheter-associated urinary tract infection (CAUTI). Here, we examined a ccpA mutant in the CAUTI model and showed that the absence of carbon catabolite control also significantly attenuates bacterial tissue burden in this model. Our data highlight the contribution of central carbon metabolism to growth of E. faecalis at various sites of infection. IMPORTANCE Hospital-acquired infections account for 2 billion dollars annually in increased health care expenses and cause more than 100,000 deaths in the United States alone. Enterococci are the second leading cause of hospital-acquired infections. They form biofilms at surgical sites and are often associated with infections of the urinary tract following catheterization. Nutrient uptake and growth are key factors that influence their ability to cause disease. Our research identified a large set of genes that illuminate nutrient uptake pathways in enterococci. Perturbation of the metabolic circuit reduces virulence in a rabbit endocarditis model, as well as in catheter-associated urinary tract infection in mice. Targeting metabolic pathways that are important in infection may lead to new treatments against multidrug-resistant enterococcal infections.


Author(s):  
Charlotte Dessaux ◽  
M. Graciela Pucciarelli ◽  
Duarte N. Guerreiro ◽  
Conor P. O’Byrne ◽  
Francisco García-del Portillo

Listeria monocytogenes is a ubiquitous environmental bacterium and intracellular pathogen that responds to stress using predominantly the alternative sigma factor SigB. Stress is sensed by a multiprotein complex, the stressosome, extensively studied in bacteria grown in nutrient media. Following signal perception, the stressosome triggers a phosphorylation cascade that releases SigB from its anti-sigma factor. Whether the stressosome is activated during the intracellular infection, is unknown. Here, we analysed the subcellular distribution of stressosome proteins in L. monocytogenes located inside epithelial cells following their immunodetection in membrane and cytosolic fractions prepared from intracellular bacteria. Unlike bacteria in laboratory media, intracellular bacteria have a large proportion of the core stressosome protein RsbR1 associated with the membrane. Another core protein, RsbS, is however undetectable. Despite the absence of RsbS, a SigB-dependent reporter revealed that SigB activity increases gradually from early (1 h) to late (6 h) post-infection times. We also found that RsbR1 paralogues attenuate the intensity of the SigB response and that the miniprotein Prli42, reported to tether the stressosome to the membrane in response to oxidative stress, plays no role in associating RsbR1 to the membrane of intracellular bacteria. Altogether, these data indicate that, once inside host cells, the L. monocytogenes stressosome may adopt a unique configuration to sense stress and to activate SigB in the intracellular eukaryotic niche. IMPORTANCE The response to stress mediated by the alternative sigma factor SigB has been extensively characterized in Bacillus subtilis and Listeria monocytogenes. These bacteria sense stress using a supra-macromolecular complex, the stressosome, which triggers a cascade that releases SigB from its anti-sigma factor. Despite much structural data of the complex available and analyses performed in mutants lacking components of the stressosome or the signalling cascade, the integration of the stress signal and the dynamics of stressosome proteins following environmental changes remain poorly understood. Our study provides data at the protein level on essential stressosome components and SigB activity when L. monocytogenes, normally a saprophytic bacterium, adapts to an intracellular lifestyle. Our results support activation of the stressosome complex in intracellular bacteria. The apparent loss of the stressosome core protein RsbS in intracellular L. monocytogenes also challenges current models, favouring the idea of a unique stressosome architecture responding to intracellular host cues.


Biochemistry ◽  
2021 ◽  
Author(s):  
Debabrata Sinha ◽  
Debasmita Sinha ◽  
Anindya Dutta ◽  
Tushar Chakraborty ◽  
Rajkrishna Mondal ◽  
...  

mSystems ◽  
2020 ◽  
Vol 5 (6) ◽  
Author(s):  
A. K. M. Firoj Mahmud ◽  
Kristina Nilsson ◽  
Anna Fahlgren ◽  
Roberto Navais ◽  
Rajdeep Choudhury ◽  
...  

ABSTRACT RpoN, an alternative sigma factor commonly known as σ54, is implicated in persistent stages of Yersinia pseudotuberculosis infections in which genes associated with this regulator are upregulated. We here combined phenotypic and genomic assays to provide insight into its role and function in this pathogen. RpoN was found essential for Y. pseudotuberculosis virulence in mice, and in vitro functional assays showed that it controls biofilm formation and motility. Mapping genome-wide associations of Y. pseudotuberculosis RpoN using chromatin immunoprecipitation coupled with next-generation sequencing identified an RpoN binding motif located at 103 inter- and intragenic sites on both sense and antisense strands. Deletion of rpoN had a large impact on gene expression, including downregulation of genes encoding proteins involved in flagellar assembly, chemotaxis, and quorum sensing. There were also clear indications of cross talk with other sigma factors, together with indirect effects due to altered expression of other regulators. Matching differential gene expression with locations of the binding sites implicated around 130 genes or operons potentially activated or repressed by RpoN. Mutagenesis of selected intergenic binding sites confirmed both positive and negative regulatory effects of RpoN binding. Corresponding mutations of intragenic sense sites had less impact on associated gene expression. Surprisingly, mutating intragenic sites on the antisense strand commonly reduced expression of genes carried by the corresponding sense strand. IMPORTANCE The alternative sigma factor RpoN (σ54), which is widely distributed in eubacteria, has been implicated in controlling gene expression of importance for numerous functions including virulence. Proper responses to host environments are crucial for bacteria to establish infection, and regulatory mechanisms involved are therefore of high interest for development of future therapeutics. Little is known about the function of RpoN in the intestinal pathogen Y. pseudotuberculosis, and we therefore investigated its regulatory role in this pathogen. This regulator was indeed found to be critical for establishment of infection in mice, likely involving its requirement for motility and biofilm formation. The RpoN regulon involved both activating and suppressive effects on gene expression which could be confirmed with mutagenesis of identified binding sites. This is the first study of its kind of RpoN in Y. pseudotuberculosis, revealing complex regulation of gene expression involving both productive and silent effects of its binding to DNA, providing important information about RpoN regulation in enterobacteria.


eLife ◽  
2020 ◽  
Vol 9 ◽  
Author(s):  
Calum HG Johnston ◽  
Anne-Lise Soulet ◽  
Matthieu Bergé ◽  
Marc Prudhomme ◽  
David De Lemos ◽  
...  

Competence is a widespread bacterial differentiation program driving antibiotic resistance and virulence in many pathogens. Here, we studied the spatiotemporal localization dynamics of the key regulators that master the two intertwined and transient transcription waves defining competence in Streptococcus pneumoniae. The first wave relies on the stress-inducible phosphorelay between ComD and ComE proteins, and the second on the alternative sigma factor σX, which directs the expression of the DprA protein that turns off competence through interaction with phosphorylated ComE. We found that ComD, σX and DprA stably co-localize at one pole in competent cells, with σX physically conveying DprA next to ComD. Through this polar DprA targeting function, σX mediates the timely shut-off of the pneumococcal competence cycle, preserving cell fitness. Altogether, this study unveils an unprecedented role for a transcription σ factor in spatially coordinating the negative feedback loop of its own genetic circuit.


Sign in / Sign up

Export Citation Format

Share Document