transcriptome comparison
Recently Published Documents


TOTAL DOCUMENTS

86
(FIVE YEARS 32)

H-INDEX

19
(FIVE YEARS 2)

2021 ◽  
Author(s):  
renxiang lu ◽  
Miaoyu Song ◽  
Zhe Wang ◽  
Yanlei Zhai ◽  
Chaoyang Hu ◽  
...  

Abstract Red flesh is a welcomed fruit trait, yet the regulation of red flesh formation in grape is not well understood. ‘Mio Red’ is a seedless table grape variety with light red flesh and blue-purple skin, the flesh color developed in the late stage of berry ripening, remarkably later than the skin coloring at veraison. The flesh and skin flavonoids metabolome and the transcriptome were analyzed. A total of 173 flavonoids including 17 anthocyanins were identified, 68 were found significantly different (Fold change ≥ 2 or ≤ 0. 5, VIP ≥ 1). Quercetin 3-O-glucoside, epicatechin-epiafzelechin, apigenin 6,8-C-diglucoside and hesperetin 5-O-glucoside were of higher content in the flesh, while the rest flavonoids were of higher content in the skin. The main anthocyanin in the flesh was pelargonidin derivatives in contrast to peonidin derivatives in the skin. Transcriptome comparison recruited 3970 differentially expressed genes (DEGs, log2Fold change > = 1, FDR < 0.05, FPKM ≥ 1), among them 57 were structural genes of flavonoid metabolism pathway. Two anthocyanin synthase (ANS) DEGs were annotated, ANS1 (Vitvi11g00565) and ANS2 (Vitvi02g00435) led the expression in the flesh and skin respectively. In the flesh, anthocyanin biosynthesis structural gene UFGT, positive regulators MYBA1/2/3, and anthocyanin transporters GST14 and MATE5 were of significantly lower expression, while negative regulators MYBC2-L1 and MYB3 were of higher transcription. The results of this study provide new information in the coloring mechanism of red flesh grape and assisting breeding of future table grapes having higher content of phytonutrient providing the health benefit as red wines.


Diversity ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 529
Author(s):  
Natalia Sveshnikova ◽  
Michele D. Piercey-Normore

Lichen secondary metabolites are natural products of high medicinal and industrial value, which are produced by the fungal symbiont (mycobiont) of lichens in response to environmental changes. It has been shown that the cultured mycobiont is capable of secondary metabolite production, specifically polyketides, and polyketide production is affected by the presence or absence of the algal or cyanobacterial symbiont (photobiont). Identification of polyketide synthases encoding genes is, in turn, key for understanding the regulation of secondary metabolite synthesis. Using a previously established method of resynthesis for Cladonia rangiferina as well as the sequenced and assembled genome of that species, we compared transcriptomes of C. rangiferina cultured alone and resynthesized with the photobiont (Asterochloris glomerata) to reveal transcriptionally active genes in secondary metabolic gene clusters, as well some of the neighbouring genes, induced by the presence of the photobiont and events of lichenization. The results identify potential candidates for PKS genes in C. rangiferina, identify potential neighbouring genes in the PKS cluster, and offer insights into further research. The study provides preliminary insights into the activity of several identified biosynthetic gene clusters (BGC) as well as interactions of genes within those clusters.


2021 ◽  
Author(s):  
anna Almeida ◽  
Marc Gabriel ◽  
Virginie Firlej ◽  
Lorena Martin-Jaular ◽  
Matthieu Lejars ◽  
...  

Abstract Long noncoding (lnc)RNAs modulate gene expression alongside presenting unexpected source of neoantigens. Despite their immense interest, their ability to be transferred and control adjacent cells is unknown. Extracellular Vesicles (EVs) offer a protective environment for nucleic acids, with pro and anti-tumorigenic functions by controlling the immune response. In contrast to extracellular non-vesicular RNA, few studies have addressed the full RNA content within human fluids’ EVs and none have compared them with their tissue of origin. Here, we performed Total RNA-Sequencing on 6 Formaldehyde-Fixed-Parafilm-Embedded (FFPE) prostate cancer (PCa) tumor tissues and their paired urinary (u)EVs to provide the first whole transcriptome comparison from the same patients. UEVs contain simplified transcriptome with intron-free cytoplasmic transcripts and specific lnc/circular (circ)RNAs, strikingly common to all patients. Our full cellular and EVs transcriptome comparison within 3 common PCa cell lines identified a set of overlapping 14 uEV-circRNAs characterized as essential for prostate cell proliferation in vitro and 15 uEV-lncRNAs that we predicted to encode 768 high-affinity neoantigens. Our dual analysis of EVs-lnc/circRNAs both in urines’ and in vitro’s EVs provides a fundamental resource for future uEV-lnc/circRNAs phenotypic characterization involved in PCa.


2021 ◽  
Author(s):  
anna Almeida ◽  
Marc Gabriel ◽  
Virginie Firlej ◽  
Lorena Martin-Jaular ◽  
Matthieu Lejars ◽  
...  

Abstract Long noncoding (lnc)RNAs modulate gene expression alongside presenting unexpected source of neoantigens. Despite their immense interest, their ability to be transferred and control adjacent cells is unknown. Extracellular Vesicles (EVs) offer a protective environment for nucleic acids, with pro and anti-tumorigenic functions by controlling the immune response. In contrast to extracellular non-vesicular RNA, few studies have addressed the full RNA content within human fluids’ EVs and none have compared them with their tissue of origin. Here, we performed Total RNA-Sequencing on 6 Formaldehyde-Fixed-Parafilm-Embedded (FFPE) prostate cancer (PCa) tumor tissues and their paired urinary (u)EVs to provide the first whole transcriptome comparison from the same patients. UEVs contain simplified transcriptome with intron-free cytoplasmic transcripts and specific lnc/circular (circ)RNAs, strikingly common to all patients. Our full cellular and EVs transcriptome comparison within 3 common PCa cell lines identified a set of overlapping 14 uEV-circRNAs characterized as essential for prostate cell proliferation in vitro and 15 uEV-lncRNAs that we predicted to encode 768 high-affinity neoantigens. Our dual analysis of EVs-lnc/circRNAs both in urines’ and in vitro’s EVs provides a fundamental resource for future uEV-lnc/circRNAs phenotypic characterization involved in PCa.


2021 ◽  
Vol 12 ◽  
Author(s):  
Chun Li ◽  
Yinghui Duan ◽  
Hongmei Miao ◽  
Ming Ju ◽  
Libin Wei ◽  
...  

Seed coat color is an important seed quality trait in sesame. However, the genetic mechanism of seed coat color variation remains elusive in sesame. We conducted a QTL mapping of the seed coat color trait in sesame using an F2 mapping population. With the aid of the newly constructed superdense genetic linkage map comprised of 22,375 bins distributed in 13 linkage groups (LGs), 17 QTLs of the three indices (i.e., L, a, and b values) of seed coat color were detected in seven intervals on four LGs, with a phenotype variance explanation rate of 4.46–41.53%. A new QTL qSCa6.1 on LG 6 and a QTL hotspot containing at least four QTLs on LG 9 were further identified. Variants screening of the target intervals showed that there were 84 genes which possessed the variants that were high-impact and co-segregating with the seed coat color trait. Meanwhile, we performed the transcriptome comparison of the developing seeds of a white- and a black-seeded variety, and found that the differentially expressed genes were significantly enriched in 37 pathways, including three pigment biosynthesis related pathways. Integration of variants screening and transcriptome comparison results suggested that 28 candidate genes probably participated in the regulation of the seed coat color in sesame; of which, 10 genes had been proved or suggested to be involved in pigments biosynthesis or accumulation during seed formation. The findings gave the basis for the mechanism of seed coat color regulation in sesame, and exhibited the effects of the integrated approach of genome resequencing and transcriptome analysis on the genetics analysis of the complex traits.


2021 ◽  
Vol 65 ◽  
pp. 212-220
Author(s):  
M. WU ◽  
S. FU ◽  
W. JIN ◽  
W.Z. XIANG ◽  
W.C. ZHANG ◽  
...  

Author(s):  
Guo-qing Song ◽  
Xue Han ◽  
John T. Ryner ◽  
Addie Thompson ◽  
Kan Wang

Abstract Key message Overexpression of Zea mays SOC gene promotes flowering, reduces plant height, and leads to no reduction in grain production per plant, suggesting enhanced yield potential, at least, through increasing planting density. Abstract MIKC-type MADS-box gene SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1 (SOC1) is an integrator conserved in the plant flowering pathway. In this study, the maize SOC1 (ZmSOC1) gene was cloned and overexpressed in transgenic maize Hi-II genotype. The T0 plants were backcrossed with nontransgenic inbred B73 to produce first generation backcross (BC1) seeds. Phenotyping of both transgenic and null segregant (NT) BC1 plants was conducted in three independent experiments. The BC1 transgenic plants showed new attributes such as increased vegetative growth, accelerated flowering time, reduced overall plant height, and increased grain weight. Second generation backcross (BC2) plants were evaluated in the field using two planting densities. Compared to BC2 NT plants, BC2 transgenic plants, were 12–18% shorter, flowered 5 days earlier, and showed no reduction in grain production per plant and an increase in fat, starch, and simple sugars in the grain. Transcriptome comparison in young leaves of 56-day-old BC1 plants revealed that the overexpressed ZmSOC1 resulted in 107 differentially expressed genes. The upregulated transcription factor DNA BINDING WITH ONE FINGER 5.4 (DOF5.4) was among the genes responsible for the reduced plant height. Modulating expression of SOC1 opens a new and effective approach to promote flowering and reduce plant height, which may have potential to enhance crop yield and improve grain quality.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Fengchao Cui ◽  
Geli Taier ◽  
Manli Li ◽  
Xiaoxia Dai ◽  
Nan Hang ◽  
...  

AbstractCynodon species can be used for multiple purposes and have high economic and ecological significance. However, the genetic basis of the favorable agronomic traits of Cynodon species is poorly understood, partially due to the limited availability of genomic resources. In this study, we report a chromosome-scale genome assembly of a diploid Cynodon species, C. transvaalensis, obtained by combining Illumina and Nanopore sequencing, BioNano, and Hi-C. The assembly contains 282 scaffolds (~423.42 Mb, N50 = 5.37 Mb), which cover ~93.2% of the estimated genome of C. transvaalensis (~454.4 Mb). Furthermore, 90.48% of the scaffolds (~383.08 Mb) were anchored to nine pseudomolecules, of which the largest was 60.78 Mb in length. Evolutionary analysis along with transcriptome comparison provided a preliminary genomic basis for the adaptation of this species to tropical and/or subtropical climates, typically with dry summers. The genomic resources generated in this study will not only facilitate evolutionary studies of the Chloridoideae subfamily, in particular, the Cynodonteae tribe, but also facilitate functional genomic research and genetic breeding in Cynodon species for new leading turfgrass cultivars in the future.


Sign in / Sign up

Export Citation Format

Share Document