Towards an Indirect Determination of the Mass-balance Distribution of Glaciers using the Kinematic Boundary Condition

1999 ◽  
Vol 81 (4) ◽  
pp. 575-583 ◽  
Author(s):  
G.H. Gudmundsson ◽  
A. Bauder
2020 ◽  
Vol 13 (12) ◽  
pp. 6425-6445
Author(s):  
Anna Wirbel ◽  
Alexander Helmut Jarosch

Abstract. Like any gravitationally driven flow that is not constrained at the upper surface, glaciers and ice sheets feature a free surface, which becomes a free-boundary problem within simulations. A kinematic boundary condition is often used to describe the evolution of this free surface. However, in the case of glaciers and ice sheets, the naturally occurring constraint that the ice surface elevation (S) cannot fall below the bed topography (B) (S-B≥0), in combination with a non-zero mass balance rate complicates the matter substantially. We present an open-source numerical simulation framework to simulate the free-surface evolution of glaciers that directly incorporates this natural constraint. It is based on the finite-element software package FEniCS solving the Stokes equations for ice flow and a suitable transport equation, i.e. “kinematic boundary condition”, for the free-surface evolution. The evolution of the free surface is treated as a variational inequality, constrained by the bedrock underlying the glacier or the topography of the surrounding ground. This problem is solved using a “reduced space” method, where a Newton line search is performed on a subset of the problem (Benson and Munson, 2006). Therefore, the “constrained” non-linear problem-solving capabilities of PETSc's (Portable, Extensible Toolkit for Scientific Computation, Balay et al., 2019) SNES (Scalable Non-linear Equations Solver) interface are used. As the constraint is considered in the solving process, this approach does not require any ad hoc post-processing steps to enforce non-negativity of ice thickness and corresponding mass conservation. The simulation framework provides the possibility to divide the computational domain into different subdomains so that individual forms of the relevant equations can be solved for different subdomains all at once. In the presented setup, this is used to distinguish between glacierised and ice-free regions. The option to chose different time discretisations, spatial stabilisation schemes and adaptive mesh refinement make it a versatile tool for glaciological applications. We present a set of benchmark tests that highlight that the simulation framework is able to reproduce the free-surface evolution of complex geometries under different conditions for which it is mass-conserving and numerically stable. Real-world glacier examples demonstrate high-resolution change in glacier geometry due to fully resolved 3D velocities and spatially variable mass balance rate, whereby realistic glacier recession and advance states can be simulated. Additionally, we provide a thorough analysis of different spatial stabilisation techniques as well as time discretisation methods. We discuss their applicability and suitability for different glaciological applications.


2020 ◽  
Author(s):  
Anna Wirbel ◽  
Alexander Helmut Jarosch

Abstract. Like any gravitationally driven flow that is not constrained at the upper surface, glaciers and ice sheets feature a free-surface, which becomes a free boundary problem within simulations. A kinematic boundary condition is often used to describe the evolution of this free-surface. However, in the case of glaciers and ice sheets, the naturally occurring constraint that the ice surface elevation (S) can not fall below the bed topography (B), (S-B > = 0) in combination with a non-zero mass balance rate complicates the matter substantially. We present an open-source numerical simulation framework to simulate the free-surface evolution of glaciers that directly incorporates this natural constraint. It is based on the finite element software package FEniCS solving the Stokes equations for ice flow and a suitable transport equation, i.e. 'kinematic boundary condition', for the free-surface evolution. The evolution of the free--surface is treated as a variational inequality, constrained by the bedrock underlying the glacier or the topography of the surrounding ground. To solve this problem, the 'constrained' non--linear problem solving capabilities of PETSc's SNES interface are used. As the constraint is considered in the solving process, this approach does not require any ad-hoc post-processing steps to enforce no--negativity of ice thickness as well as mass conservation. The simulation framework provides the possibility to partition the computational domain so that individual forms of the relevant equations can be solved for different subdomains all at once. In the presented setup, this is used to distinguish between glacierized and ice-free regions. The option to chose different time discretizations, spatial stabilisation schemes and adaptive mesh refinement make it a versatile tool for glaciological applications. We present a set of benchmark tests that highlight the simulation framework is able to reproduce the free-surface evolution of complex geometries under different conditions for which it is mass conserving and numerically stable. Real--world glacier examples demonstrate high resolution change in glacier geometry due to fully-resolved 3D velocities and spatially variable mass balance rate, whereby realistic glacier recession and advance states can be simulated. Additionally, we provide a thorough analysis of different spatial stabilisation techniques as well as time discretization methods. We discuss their applicability and suitability for different glaciological applications.


2020 ◽  
Vol 17 ◽  
Author(s):  
Mansureh Alizadeh ◽  
Mandana Amiri ◽  
Abolfazl Bezaatpour

: Amikacin is an aminoglycoside antibiotic used for many gram-negative bacterial infections like infections in the urinary tract, infections in brain, lungs and abdomen. Electrochemical determination of amikacin is a challenge in electroanalysis because it shows no voltammetric peak at the surface of bare electrodes. In this approach, a very simple and easy method for indirect voltammetric determination of amikacin presented in real samples. Gold nanoparticles were electrodeposited at the surface of glassy carbon electrode in constant potential. The effect of several parameters such as time and potential of deposition, pH and scan rates on signal were studied. The cathodic peak current of Au3+ decreased with increasing amikacin concentration. Quantitative analysis of amikacin was performed using differential pulse voltammetry by following cathodic peak current of gold ions. Two dynamic linear ranges of 1.0 × 10−8–1.0 × 10-7 M and 5.0 × 10−7–1.0 × 10-3 M were obtained and limit of detection was estimated 3.0× 10−9 M. The method was successfully determined amikacin in pharmaceutical preparation and human serum. The effect of several interference in determination of amikacin was also studied.


1994 ◽  
Vol 59 (10) ◽  
pp. 2227-2234 ◽  
Author(s):  
Václav Stužka ◽  
Jaromír Souček

A new method has been developed for the indirect determination of nitroso- and nitrophenols by atomic absorption spectrometry (AAS) after extraction of ionic associates involving bipyridylocopper(II) (CuDP) or phenanthrolinocopper(II) (CuPH) complexes. Nitrobenzene and methyl isobutyl ketone appeared to be suitable for the extraction. It was possible to determine several tenths to hundredths of a milligram of nitrophenol in a litre. Extractable associates with CuDP and CuPH are formed by phenols possessing two substituents or by higher molecular weight phenols such as naphthol or hydroxyquinoline. Monosubstituted phenols fail to form associates of this kind.


2021 ◽  
Vol 11 (4) ◽  
pp. 1482
Author(s):  
Róbert Huňady ◽  
Pavol Lengvarský ◽  
Peter Pavelka ◽  
Adam Kaľavský ◽  
Jakub Mlotek

The paper deals with methods of equivalence of boundary conditions in finite element models that are based on finite element model updating technique. The proposed methods are based on the determination of the stiffness parameters in the section plate or region, where the boundary condition or the removed part of the model is replaced by the bushing connector. Two methods for determining its elastic properties are described. In the first case, the stiffness coefficients are determined by a series of static finite element analyses that are used to obtain the response of the removed part to the six basic types of loads. The second method is a combination of experimental and numerical approaches. The natural frequencies obtained by the measurement are used in finite element (FE) optimization, in which the response of the model is tuned by changing the stiffness coefficients of the bushing. Both methods provide a good estimate of the stiffness at the region where the model is replaced by an equivalent boundary condition. This increases the accuracy of the numerical model and also saves computational time and capacity due to element reduction.


Sign in / Sign up

Export Citation Format

Share Document