RENIN ANGIOTENSIN SYSTEM AND SYMPATHETIC NERVE ACTIVITY IN MILD ESSENTIAL HYPERTENSION. THE FUNCTIONAL SIGNIFICANCE OF ANGIOTENSIN II IN UNTREATED AND THIAZIDE TREATED HYPERTENSIVE PATIENTS.

2009 ◽  
Vol 205 (S625) ◽  
pp. 97-102
Author(s):  
H. IBSEN ◽  
A. LETH ◽  
H. HOLLNAGEL ◽  
A.M. KAPPELGAARD ◽  
M. DAMKJAER IELSEN ◽  
...  
2012 ◽  
Vol 303 (2) ◽  
pp. H197-H206 ◽  
Author(s):  
Aline M. Hilzendeger ◽  
Donald A. Morgan ◽  
Leonard Brooks ◽  
David Dellsperger ◽  
Xuebo Liu ◽  
...  

The sympathetic nervous system, leptin, and renin-angiotensin system (RAS) have been implicated in obesity-associated hypertension. There is increasing evidence for the presence of both leptin and angiotensin II receptors in several key brain cardiovascular and metabolic control regions. We tested the hypothesis that the brain RAS plays a facilitatory role in the sympathetic nerve responses to leptin. In rats, intracerebroventricular (ICV) administration of losartan (5 μg) selectively inhibited increases in renal and brown adipose tissue (BAT) sympathetic nerve activity (SNA) produced by leptin (10 μg ICV) but did not reduce the SNA responses to corticotrophin-releasing factor (CRF) or the melanocortin receptor agonist MTII. In mice with deletion of angiotensin II type-1a receptors (AT1aR−/−), increases in renal and BAT SNA induced by leptin (2 μg ICV) were impaired whereas SNA responses to MTII were preserved. Decreases in food intake and body weight with ICV leptin did not differ in AT1aR−/− vs. AT1aR+/+ mice. ICV leptin in rats increased AT1aR and angiotensin-converting enzyme (ACE) mRNA in the subfornical organ and AT1aR mRNA in the arcuate nucleus, suggesting leptin-induced upregulation of the brain RAS in specific brain regions. To evaluate the role of de novo production of brain angiotensin II in SNA responses to leptin, we treated rats with captopril (12.5 μg ICV). Captopril attenuated leptin effects on renal and BAT SNA. In conclusion, these studies provide evidence that the brain RAS selectively facilitates renal and BAT sympathetic nerve responses to leptin while sparing effects on food intake.


1978 ◽  
Vol 55 (s4) ◽  
pp. 319s-321s ◽  
Author(s):  
H. Ibsen ◽  
A. Leth ◽  
H. Hollnagel ◽  
A. M. Kappelgaard ◽  
M. Damkjaer Nielsen ◽  
...  

1. Twenty-five patients with mild essential hypertension, identified during a survey of a population born in 1936, were investigated. 2. Basal and post-frusemide values for plasma renin concentration and plasma angiotensin II concentration did not differ markedly from reference values in 25 40-year-old control subjects. In the untreated, sodium replete state saralasin infusion (5·4 nmol min−1 kg−1) produced an increase in mean arterial pressure in the patient group as a whole. 3. Twenty-one patients were treated with hydrochlorothiazide, mean dose 75 mg/day for 3 months. Pre-treatment, frusemide-stimulated plasma renin concentration and plasma angiotensin II, and values during thiazide treatment were higher in ‘non-responders’ (n = 10) to hydrochlorothiazide treatment than in ‘thiazide-responders’ (n = 11). During thiazide therapy, angiotensin II blockade induced a clear-cut decrease in mean arterial pressure in all ‘thiazide-nonresponders’ whereas only four out of 11 ‘thiazide-responders’ showed a borderline decline in mean arterial pressure. 4. The functional significance of the renin—angiotensin system in mild essential hypertension emerges only after thiazide treatment. Thiazide-induced stimulation of the renin—angiotensin system counter-balanced the hypotensive effect of thiazide in some 40% of the treated patients. Thus the responsiveness of the renin—angiotensin system determined the blood pressure response to thiazide treatment.


2002 ◽  
Vol 282 (3) ◽  
pp. H890-H895 ◽  
Author(s):  
Shun-Guang Wei ◽  
Robert B. Felder

All elements of the renin-angiotensin system (RAS) are present in the forebrain, particularly in circumventricular organs surrounding the third cerebral ventricle. We tested the hypothesis that forebrain angiotensin-converting enzyme (ACE) has a tonic excitatory influence on sympathetic drive. Neurally intact and sinoaortic-denervated pentobarbital-anesthetized rats were treated with forebrain-directed intracarotid artery (ICA) versus intravenous injections of angiotensin I (ANG I) and of the ACE inhibitor captopril. In intact rats, ICA ANG I elicited a rise in arterial pressure and a concomitant reduction in renal sympathetic nerve activity (RSNA; ICA captopril elicited the opposite responses). In barodenervated rats, ICA ANG I increased and ICA captopril decreased arterial pressure and RSNA in parallel; intravenous ANG I had no effect on RSNA. The findings suggest that the intrinsic forebrain RAS has a tonic excitatory influence on sympathetic drive that is overshadowed in normal rats by baroreflex mechanisms, but may assume a more prominent role in pathophysiological states (e.g., heart failure) in which baroreflex mechanisms are impaired and RAS activity is augmented.


2008 ◽  
Vol 294 (2) ◽  
pp. H1067-H1074 ◽  
Author(s):  
Zhi-Hua Zhang ◽  
Yang Yu ◽  
Yu-Ming Kang ◽  
Shun-Guang Wei ◽  
Robert B. Felder

Aldosterone acts upon mineralocorticoid receptors in the brain to increase blood pressure and sympathetic nerve activity, but the mechanisms are still poorly understood. We hypothesized that aldosterone increases sympathetic nerve activity by upregulating the renin-angiotensin system (RAS) and oxidative stress in the brain, as it does in peripheral tissues. In Sprague-Dawley rats, aldosterone (Aldo) or vehicle (Veh) was infused for 1 wk via an intracerebroventricular (ICV) cannula, while RU-28318 (selective mineralocorticoid receptor antagonist), Tempol (superoxide dismutase mimetic), losartan [angiotensin II type 1 receptor (AT1R) antagonist], or Veh was infused simultaneously via a second ICV cannula. After 1 wk of ICV Aldo, plasma norepinephrine was increased and mean arterial pressure was slightly elevated, but heart rate was unchanged. These effects were ameliorated by ICV infusion of RU-28318, Tempol or losartan. Aldo increased expression of AT1R and angiotensin-converting enzyme (ACE) mRNA in hypothalamic tissue. RU-28318 minimized and Tempol prevented the increase in AT1R mRNA; RU-28318 prevented the increase in ACE mRNA. Losartan had no effect on AT1R or ACE mRNA. Immunohistochemistry revealed Aldo-induced increases in dihydroethidium staining (indicating oxidative stress) and Fra-like activity (indicating neuronal excitation) in neurons of the hypothalamic paraventricular nucleus (PVN). RU-28318 prevented the increases in superoxide and Fra-like activity in PVN; Tempol and losartan minimized these effects. Acute ICV infusions of sarthran (AT1R antagonist) or Tempol produced greater sympathoinhibition in Aldo-treated than in Veh-treated rats. Thus aldosterone upregulates key elements of brain RAS and induces oxidative stress in the hypothalamus. Aldosterone may increase sympathetic nerve activity by these mechanisms.


2007 ◽  
Vol 10 (10A) ◽  
pp. 1151-1155 ◽  
Author(s):  
Julian Segura ◽  
Luis M Ruilope

AbstractAbdominal obesity is a risk factor for cardiovascular disease worldwide, and it is becoming a dramatic issue for national health systems. Overweight and obesity are highly associated with multiple comorbidities, elevated blood pressure values, dyslipidaemia, reduced insulin sensitivity and alterations of large and minor vessels.Activation of the renin–angiotensin system (RAS) in adipose tissue may represent an important link between obesity and hypertension. Angiotensin II has been shown to play a role in adipocyte growth and differentiation. Adipocytes also secrete adiponectin, enhancing insulin sensitivity and preventing atherosclerosis. Blockade of the RAS with either an angiotensin-converting enzyme inhibitor or an angiotensin II receptor blocker results in a substantial increase in adiponectin levels and improved insulin sensitivity. Obesity-related hypertension needs a comprehensive approach to treatment including both weight loss and pharmacological therapies. Antihypertensive drugs prescription should be based on guidelines recommendations for management of hypertension, taking into account the growing evidences about the relationship between some antihypertensive drugs and the development of new-onset diabetes.This review discusses the role of RAS in the relationship between obesity, essential hypertension and insulin resistance.


2012 ◽  
Vol 2012 ◽  
pp. 1-7 ◽  
Author(s):  
Takuya Kishi ◽  
Yoshitaka Hirooka

It has been recognized that the sympathetic nervous system is abnormally activated in chronic heart failure, and leads to further worsening chronic heart failure. In the treatment of chronic heart failure many clinical studies have already suggested that the inhibition of the abnormal sympathetic hyperactivity by beta blockers is beneficial. It has been classically considered that abnormal sympathetic hyperactivity in chronic heart failure is caused by the enhancement of excitatory inputs including changes in peripheral baroreceptor and chemoreceptor reflexes and chemical mediators that control sympathetic outflow. Recently, the abnormalities in the central regulation of sympathetic nerve activity mediated by brain renin angiotensin system-oxidative stress axis and/or proinflammatory cytokines have been focused. Central renin angiotensin system, proinflammatory cytokines, and the interaction between them have been determined as the target of the sympathoinhibitory treatment in experimental animal models with chronic heart failure. In conclusion, we must recognize that chronic heart failure is a syndrome with an abnormal sympathoexcitation, which is caused by the abnormalities in the central regulation of sympathetic nerve activity.


Sign in / Sign up

Export Citation Format

Share Document