scholarly journals Habitat use by the fish assemblages of two chalk streams

1997 ◽  
Vol 51 (1) ◽  
pp. 64-79 ◽  
Author(s):  
J. Prenda ◽  
P. D. Armitage ◽  
A. Grayston
2019 ◽  
Vol 95 (4) ◽  
pp. 639-656 ◽  
Author(s):  
Erin L Meyer-Gutbrod ◽  
Li Kui ◽  
Mary M Nishimoto ◽  
Milton S Love ◽  
Donna M Schroeder ◽  
...  

There are thousands of offshore oil and gas platforms worldwide that will eventually become obsolete, and one popular decommissioning alternative is the "rigs to reefs" conversion that designates all or a portion of the underwater infrastructure as an artificial reef, thereby reducing the burden of infrastructure removal. The unique architecture of each platform may influence the size and structure of the associated fish assemblage if different structural elements form distinct habitats for fishes. Using scuba survey data from 11 southern California platforms from 1995 to 2000, we examined fish assemblages associated with structural elements of the structure, including the major horizontal crossbeams outside of the jacket, vertical jacket legs, and horizontal crossbeams that span the jacket interior. Patterns of habitat association were examined among three depth zones: shallow (<16.8 m), midwater (16.8–26 m), and deep (>26 m); and between two life stages: young- of-the-year and non-young-of-the-year. Fish densities tended to be greatest along horizontal beams spanning the jacket interior, relative to either horizontal or vertical beams along the jacket exterior, indicating that the position of the habitat within the overall structure is an important characteristic affecting fish habitat use. Fish densities were also higher in transects centered directly over a vertical or horizontal beam relative to transects that did not contain a structural element. These results contribute to the understanding of fish habitat use on existing artificial reefs, and can inform platform decommissioning decisions as well as the design of new offshore structures intended to increase fish production.


2015 ◽  
Vol 13 (3) ◽  
pp. 579-590 ◽  
Author(s):  
Carolina Rodrigues Bordignon ◽  
Lilian Casatti ◽  
María Angélica Pérez-Mayorga ◽  
Fabrício Barreto Teresa ◽  
Gabriel Lourenço Brejão

The functional structure of communities is commonly measured by the variability in functional traits, which may demonstrate complementarity or redundancy patterns. In this study, we tested the influence of environmental variables on the functional structure of fish assemblages in Amazonian streams within a deforestation gradient. We calculated six ecomorphological traits related to habitat use from each fish species, and used them to calculate the net relatedness index (NRI) and the nearest taxon index (NTI). The set of species that used the habitat differently (complementary or overdispersed assemblages) occurred in sites with a greater proportion of forests. The set of species that used the habitat in a similar way (redundant or clustered assemblages) occurred in sites with a greater proportion of grasses in the stream banks. Therefore, the deforestation of entire watersheds, which has occurred in many Amazonian regions, may be a central factor for the functional homogenization of fish fauna.


Estuaries ◽  
1992 ◽  
Vol 15 (3) ◽  
pp. 368 ◽  
Author(s):  
S. G. Ayvazian ◽  
L. A. Deegan ◽  
J. T. Finn

Hydrobiologia ◽  
2013 ◽  
Vol 724 (1) ◽  
pp. 217-234 ◽  
Author(s):  
Tomáš Jůza ◽  
Mojmír Vašek ◽  
Michal Kratochvíl ◽  
Petr Blabolil ◽  
Martin Čech ◽  
...  

2019 ◽  
Vol 11 (19) ◽  
pp. 5444 ◽  
Author(s):  
Paul Meulenbroek ◽  
Sebastian Stranzl ◽  
Adama Oueda ◽  
Jan Sendzimir ◽  
Komandan Mano ◽  
...  

Human pressures and loss of natural fish habitats led to a decline in fish populations in terms of abundances, biodiversity, and average size in sub-Sahelian Burkina Faso. Little knowledge exists about fish assemblages regarding their composition, their habitat preferences, or their sensitivity to or tolerance of human pressures. This research provides the first data-driven basis for sustainably managing fish and associated aquatic and terrestrial habitats. Surveys in four different regions sampled 18,000 specimens from 69 species during the dry season. Fish communities, available abiotic habitat conditions, habitat use, and human pressures were assessed and analyzed. Fish communities cluster into four distinct types, each dominated by either Cichlidae, Clariidae, Cyprinidae, or Alestidae and accompanied by specific other families and genera of fish. Habitat preferences of four key species (Labeo coubie, Bagrus bajad, Chelaethiops bibie, and Lates niloticus) were linked to ecological habitat conditions. Results show that physical parameters influence fish community composition and abundances and, when indexed according to pressure type, are linked to responses in fish metrics. Relative abundance either dropped (Mormyridae) or increased (Cichlidae, Cyprinidae) with rising pressure intensity, and some sentinel taxa (Auchenoglanis, Hydrocynus) were only found in low-pressure sites. The outcomes of this study provide basic knowledge of habitat availability, habitat use by fish, species associations, and human pressures and therefore provide the basis for effective conservation and management of fish populations.


2010 ◽  
Vol 67 (12) ◽  
pp. 1942-1956 ◽  
Author(s):  
Jeffrey A. Falke ◽  
Kurt D. Fausch ◽  
Kevin R. Bestgen ◽  
Larissa L. Bailey

Knowledge of basic life-history attributes, paired with unbiased estimates of species distribution, is critical for the effective conservation of sensitive fish species. We quantified the spawning phenology, habitat use, and detectability for larvae of an assemblage of threatened Great Plains, USA, stream fishes using new occupancy estimation methods. Spawning by six Great Plains fish species occurred from April through July, and was likely initiated by changes in water temperature and photoperiod. Habitat size and type were important factors influencing the occupancy of larvae in spawning habitats. Detectability of larvae differed among species and over time, and was influenced by habitat depth and fish size. Our models indicated that multiple samples from individual habitats within a season are needed to adequately detect and predict occupancy by stream fish larvae. Conservation efforts for imperiled Great Plains fish assemblages should focus on sustaining flows that maintain a sufficient density and size of habitats needed for successful spawning and recruitment. The occupancy estimation and modeling methods employed here will be useful in developing comprehensive, unbiased programs to monitor the reproductive success of Great Plains stream fishes.


2016 ◽  
Vol 544 ◽  
pp. 197-211 ◽  
Author(s):  
A Chin ◽  
MR Heupel ◽  
CA Simpfendorfer ◽  
AJ Tobin

2019 ◽  
Vol 609 ◽  
pp. 239-256 ◽  
Author(s):  
TL Silva ◽  
G Fay ◽  
TA Mooney ◽  
J Robbins ◽  
MT Weinrich ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document