Spawning phenology and habitat use in a Great Plains, USA, stream fish assemblage: an occupancy estimation approach

2010 ◽  
Vol 67 (12) ◽  
pp. 1942-1956 ◽  
Author(s):  
Jeffrey A. Falke ◽  
Kurt D. Fausch ◽  
Kevin R. Bestgen ◽  
Larissa L. Bailey

Knowledge of basic life-history attributes, paired with unbiased estimates of species distribution, is critical for the effective conservation of sensitive fish species. We quantified the spawning phenology, habitat use, and detectability for larvae of an assemblage of threatened Great Plains, USA, stream fishes using new occupancy estimation methods. Spawning by six Great Plains fish species occurred from April through July, and was likely initiated by changes in water temperature and photoperiod. Habitat size and type were important factors influencing the occupancy of larvae in spawning habitats. Detectability of larvae differed among species and over time, and was influenced by habitat depth and fish size. Our models indicated that multiple samples from individual habitats within a season are needed to adequately detect and predict occupancy by stream fish larvae. Conservation efforts for imperiled Great Plains fish assemblages should focus on sustaining flows that maintain a sufficient density and size of habitats needed for successful spawning and recruitment. The occupancy estimation and modeling methods employed here will be useful in developing comprehensive, unbiased programs to monitor the reproductive success of Great Plains stream fishes.

2008 ◽  
Vol 65 (2) ◽  
pp. 245-257 ◽  
Author(s):  
Henry F Wilson ◽  
Marguerite A Xenopoulos

We examined the relationship between multiple spatial scales of fish assemblage structure and land cover in streams of a northern Great Plains ecoregion. We used regional richness measurements, an index of biotic integrity (IBI), and nonmetric multidimensional scaling (NMS) ordination to characterize fish assemblages. These metrics were related to regional catchment landscape at two spatial scales (overall catchment, overall riparian) and then to a set of local subcatchments from within these catchments at three scales (overall subcatchment, overall riparian buffer, and reach). Relationships between catchment fish richness, IBI scores, and landscape predictors were strongest at the riparian scale, with the strongest single predictor being riparian forest (r2 = 0.63, P < 0.01). NMS ordination analysis showed clear similarities between fish species assemblages in agriculturally dominated catchments and assemblages found in smaller headwater streams. At the same time, forested catchments and catchments with larger areas exhibited similar fish species assemblages. Our results indicate that both local and regional stream fish assemblages are structured by broader-scale landscape characteristics, with land cover providing a better indication of overall available habitat volume than catchment area or stream order.


2017 ◽  
Vol 114 (28) ◽  
pp. 7373-7378 ◽  
Author(s):  
Joshuah S. Perkin ◽  
Keith B. Gido ◽  
Jeffrey A. Falke ◽  
Kurt D. Fausch ◽  
Harry Crockett ◽  
...  

Groundwater pumping for agriculture is a major driver causing declines of global freshwater ecosystems, yet the ecological consequences for stream fish assemblages are rarely quantified. We combined retrospective (1950–2010) and prospective (2011–2060) modeling approaches within a multiscale framework to predict change in Great Plains stream fish assemblages associated with groundwater pumping from the United States High Plains Aquifer. We modeled the relationship between the length of stream receiving water from the High Plains Aquifer and the occurrence of fishes characteristic of small and large streams in the western Great Plains at a regional scale and for six subwatersheds nested within the region. Water development at the regional scale was associated with construction of 154 barriers that fragment stream habitats, increased depth to groundwater and loss of 558 km of stream, and transformation of fish assemblage structure from dominance by large-stream to small-stream fishes. Scaling down to subwatersheds revealed consistent transformations in fish assemblage structure among western subwatersheds with increasing depths to groundwater. Although transformations occurred in the absence of barriers, barriers along mainstem rivers isolate depauperate western fish assemblages from relatively intact eastern fish assemblages. Projections to 2060 indicate loss of an additional 286 km of stream across the region, as well as continued replacement of large-stream fishes by small-stream fishes where groundwater pumping has increased depth to groundwater. Our work illustrates the shrinking of streams and homogenization of Great Plains stream fish assemblages related to groundwater pumping, and we predict similar transformations worldwide where local and regional aquifer depletions occur.


<em>Abstract</em>.—Stream fishes carry out their life histories across broad spatial and temporal scales, leading to spatially structured populations. Therefore, incorporating metapopulation dynamics into models of stream fish populations may improve our ability to understand mechanisms regulating them. First, we reviewed empirical research on metapopulation dynamics in the stream fish ecology literature and found 31 papers that used the metapopulation framework. The majority of papers applied no specific metapopulation model, or included space only implicitly. Although parameterization of spatially realistic models is challenging, we suggest that stream fish ecologists should incorporate space into models and recognize that metapopulation types may change across scales. Second, we considered metacommunity theory, which addresses how trade-offs among dispersal, environmental heterogeneity, and biotic interactions structure communities across spatial scales. There are no explicit tests of metacommunity theory using stream fishes to date, so we used data from our research in a Great Plains stream to test the utility of these paradigms. We found that this plains fish metacommunity was structured mainly by spatial factors related to dispersal opportunity and, to a lesser extent, by environmental heterogeneity. Currently, metacommunity models are more heuristic than predictive. Therefore, we propose that future stream fish metacommunity research should focus on developing testable hypotheses that incorporate stream fish life history attributes, and seasonal environmental variability, across spatial scales. This emerging body of research is likely to be valuable not only for basic stream fish ecological research, but also multispecies conservation and management.


2021 ◽  
Vol 25 (02) ◽  
pp. 433-448
Author(s):  
Bruno Eleres Soares ◽  
◽  
Gabriel Nakamura ◽  
◽  

Neotropical stream fishes exhibit a complex evolutionary history and encompass both old and recent lineages. Patterns of species diversity of stream fishes are relatively well-studied for Neotropical streams, but not for patterns of clade distribution and historical factors that structure these assemblages, which are the main interests of phylogenetic ecology. Understanding the evolutionary context of communities provides important insights into large-scale mechanisms that structure them. This review aims to: (i) discuss the main concepts of phylogenetic ecology and its application to Neotropical stream fishes; and (ii) highlight the main methods applied in this background. The first section presents the main phylogenetic hypothesis of fishes and discusses how their gaps in Neotropical stream fishes hinder phylogenetic ecology. Afterward, we discuss the main concepts of phylogenetic ecology (phylogenetic signal, community phylogenetic structure, and phylogenetic diversity), as well as gaps and potential applications of these concepts and tools to understand Neotropical stream fish assemblages. The second section introduces the main methods to address the phylogenetic ecology, including a standardized procedure to edit fish phylogenetic trees, comparative methods, and indices and analytical tools to understand community structure and conservation importance. Finally, we discuss the perspectives to the next years to better understand the Neotropical stream fish assemblages in the light of past and current historical processes.


2015 ◽  
Vol 13 (3) ◽  
pp. 579-590 ◽  
Author(s):  
Carolina Rodrigues Bordignon ◽  
Lilian Casatti ◽  
María Angélica Pérez-Mayorga ◽  
Fabrício Barreto Teresa ◽  
Gabriel Lourenço Brejão

The functional structure of communities is commonly measured by the variability in functional traits, which may demonstrate complementarity or redundancy patterns. In this study, we tested the influence of environmental variables on the functional structure of fish assemblages in Amazonian streams within a deforestation gradient. We calculated six ecomorphological traits related to habitat use from each fish species, and used them to calculate the net relatedness index (NRI) and the nearest taxon index (NTI). The set of species that used the habitat differently (complementary or overdispersed assemblages) occurred in sites with a greater proportion of forests. The set of species that used the habitat in a similar way (redundant or clustered assemblages) occurred in sites with a greater proportion of grasses in the stream banks. Therefore, the deforestation of entire watersheds, which has occurred in many Amazonian regions, may be a central factor for the functional homogenization of fish fauna.


1995 ◽  
Vol 52 (7) ◽  
pp. 1487-1498 ◽  
Author(s):  
Brian M. Wood ◽  
Mark B. Bain

Microhabitat use and body morphology were compared among 15 warmwater stream fishes from the Alabama River (Alabama, U.S.A.) watershed. Morphological variation among separate populations of a species was detected in 14 of the 15 species, indicating that populations should be separated in analyses among species. Comparison of morphological variation between microhabitat generalist and specialist species suggested that all species may vary in morphology relative to their environment. Regression analysis showed that within two families, Cyprinidae and Percidae, morphology was related to specific microhabitat variables. In the Centrarchidae, morphology was not related to any microhabitat variables. Morphological differences among the species occurred along gradients that were similar to gradients of habitat utilization, indicating that within a family, species widely separated in microhabitat use were morphologically different and species using similar microhabitats were similar in morphology. Our results suggest that patterns of morphological variation correspond to properties of the available habitat for warmwater stream fish species.


2015 ◽  
Vol 13 (2) ◽  
pp. 349-360 ◽  
Author(s):  
Rodrigo Assis Carvalho ◽  
Francisco Leonardo Tejerina-Garro

We investigated functional patterns of fish assemblages of two adjacent basins (Araguaia and Tocantins) to test whether their headwater stream fish assemblages are more functionally (dis)similar than expected by chance and whether these (dis)similarities are related to differences of environmental conditions between basins. We used an analysis of similarities (ANOSIM) on a functional dissimilarity matrix to test for (dis)similarities between fish assemblages of both basins. We performed RLQ and fourth-corner analyses to determine fish species trait-environment relationship. Our results revealed functional dissimilarities between fish assemblages of both basins and significant species trait-environment relationships, suggesting that environmental conditions are driving such dissimilarities. Inter-basin dissimilarities are mainly driven by altitudinal and water temperature gradients, whereas dissimilarities among streams within the basins are influenced by channel depth, turbidity and conductivity. These five environmental variables mostly affected six fish species traits (body mass, water column position, substrate preference, parental care, foraging locality and migration) in different manners. This study is an attempt to understand functional trends of fish assemblages in a tropical region that remains poorly known but severely threatened.


<em>Abstract</em>.—Stream fish assemblages are influenced indirectly by natural and anthropogenic landscape features acting through intermediate factors like flow and temperature regimes, water quality, and physical habitat. These relationships affect distributions and abundances of individual species and also frame potential interactions among different types of fishes. This hierarchical influence of environmental factors, also known as the landscape perspective, is a widely accepted view of fluvial systems. However, few studies have attempted to quantify the complex mechanistic relationships among landscape variables, intermediate factors, and fish, a gap due partially to limitations of traditional analytical techniques for devolving such relationships. Using covariance structure analysis (CSA), we attempt to quantify the influence of natural and anthropogenic land uses on stream fish assemblages through indirect effects on fluvial physical habitat, including descriptors of habitat complexity, flow stability, and channel size, for 46 streams of southeastern Michigan. CSA was selected for this investigation because of its ability to quantify indirect effects of variables through intermediate factors and to account for intercorrelations among related measures. For analysis, fish assemblages were summarized by their richness and diversity and also according to functional groups that included trophic guilds and preferences for stream size, substrate, and geomorphological units, such as riffles and pools. Our analysis showed that, when acting through habitat factors, assemblages were more strongly influenced by natural landscape features, including catchment area and geology, than by anthropogenic land uses of our study region. Further, the analyses revealed that different aspects of fish assemblages varied with different habitat variables. While diversity and richness increased with habitat complexity and channel size, numbers of carnivores decreased with flow stability, possibly due to the link between flow and stream temperature regimes of our study region. Diversity and richness, however, were not affected by human land uses. Numbers of invertivores, fish preferring fine substrate, and fish preferring pool/ run habitat all increased with agriculture while numbers of detritivores increased with both agriculture and urban land use. These results emphasize complex effects of landscape features on stream fishes through intermediate factors and underscore the importance of understanding the varied response of different aspects of fish assemblages to environmental influences for improved conservation and restoration opportunities.


Sign in / Sign up

Export Citation Format

Share Document