Dynamic Fatigue of Treated High-Silica Glass: Explanation by Crack Tip Blunting

1987 ◽  
Vol 70 (6) ◽  
pp. 377-382 ◽  
Author(s):  
KAZUYUKI HIRAO ◽  
MINORU TOMOZAWA
1969 ◽  
Vol 47 (8) ◽  
pp. 1375-1379 ◽  
Author(s):  
Michie Shimizu ◽  
H. D. Gesser ◽  
M. Fujimoto

The electron spin resonance (e.s.r.) spectra of •CH3, •CHO, H and/or D, and possibly •CH2OH or •CH2OD were found by the ultraviolet (u.v.) photolysis of methanol —OH or —OD on porous high-silica glass at 77 °K. These e.s.r. spectra resemble the results of the u.v. photolysis of X-irradiated methanol indicating that some perturbation and/or sensitization occurred in the molecules by the glass surface. The absence of e.s.r. spectra from the same systems on the acid-leached glass, on the totally fluorinated glass, or on the totally —OH covered glass suggests that (i) the co-existence of surface contaminants, such as Al and Zr and not B, and some of surface —OH could be responsible for producing these free radicals, and (ii) the methanols adsorbed on these glass surfaces are stabilized against u.v. photolysis.


Author(s):  
Saeid Hadidimoud ◽  
Ali Mirzaee-Sisan ◽  
Chris E. Truman ◽  
David J. Smith

A probability distribution model, based on the local approach to fracture, has been developed and used for estimating cleavage fracture following prior loading (or warm pre-stressing) in two ferritic steels. Although there are many experimental studies it is not clear from these studies whether the generation of local residual stress and/or crack tip blunting as a result of prior loading contribute to the enhancement in toughness. We first identify the Weibull parameters required to match the experimental scatter in lower shelf toughness of the candidate steels. Second we use these parameters in finite element simulations of prior loading on the upper shelf followed by unloading and cooling to lower shelf temperatures to determine the probability of failure. The predictions are consistent with experimental scatter in toughness following WPS and provide a means of determining the relative importance of the crack tip residual stresses and crack tip blunting. We demonstrate that for our steels the crack tip residual stress is the pivotal feature in improving the fracture toughness following WPS. The paper finally discusses these results in the context of the non-uniqueness and the sensitivity of the Weibull parameters.


TANSO ◽  
1994 ◽  
Vol 1994 (163) ◽  
pp. 133-137 ◽  
Author(s):  
Shigeru Ikeda ◽  
Hiroshi Shioyama ◽  
Osamu Nakamura ◽  
Shoji Hori ◽  
Kiyohisa Eguchi ◽  
...  

Author(s):  
S. Henschel ◽  
L. Krüger

An inhomogeneous distribution of non-metallic inclusions can result from the steel casting process. The aim of the present study was to investigate the damaging effect of an inhomogeneous distribution of nonmetallic inclusions on the crack extension behavior. To this end, the fracture toughness behavior in terms of quasi-static J-?a curves was determined at room temperature. Additionally, dynamic fracture mechanics tests in an instrumented Charpy impact-testing machine were performed. The fracture surface of fracture mechanics specimens was analyzed by means of scanning electron microscopy. It was shown that an inhomogeneous distribution significantly affected the path and, therefore, the plane of crack growth. Especially clusters of non-metallic inclusions with a size of up to 200 ?m exhibited a very low crack growth resistance. Due to the damaging effect of the clusters, the growing crack was strongly deflected towards the cluster. Furthermore, crack tip blunting was completely inhibited when inclusions were located at the fatigue precrack tip. Due to the large size of the non-metallic inclusion clusters, the height difference introduced by crack path deflection was significantly larger than the stretch zone height due to the crack tip blunting. However, the crack path deflection introduced by a cluster was not associated with a toughness increasing mechanism. The dynamic loading ( 1 0.5 5 s MPam 10 ? ? K? ) did not result in a transition from ductile fracture to brittle fracture. However, the crack growth resistance decreased with increased loading rate. This was attributed to the higher portion of relatively flat regions where the dimples were less distinct.


1994 ◽  
Vol 54 (3) ◽  
pp. 375-383 ◽  
Author(s):  
Yanchun Han ◽  
Yuming Yang ◽  
Binyao Li ◽  
Zhiliu Feng

Sign in / Sign up

Export Citation Format

Share Document