Nestin-positive hair follicle pluripotent stem cells can promote regeneration of impinged peripheral nerve injury

2011 ◽  
Vol 39 (1) ◽  
pp. 33-38 ◽  
Author(s):  
Yasuyuki AMOH ◽  
Ryoichi AKI ◽  
Yuko HAMADA ◽  
Shiro NIIYAMA ◽  
Koji ESHIMA ◽  
...  
Author(s):  
Leila Beigom Hejazian ◽  
◽  
Zeinab Akbarnejad ◽  
Fatemeh Moghani Ghoroghi ◽  
Banafshe Esmaeilzade ◽  
...  

Introduction: Nowadays, cell therapy is the most advanced treatment of peripheral nerve injury. The aim of this study was to determine the effects of transplantation of hair follicle stem cells on the regeneration of the sciatic nerve injury in rats. Methods: The bulge region of the rat whisker was isolated and cultured. Morphological and biological features of the cultured bulge cells were observed by light microscopy and immunocytochemistry methods. Percentages of CD34, K15 and Nestin cell markers expression were demonstrated by flow cytometry. Rats were randomly divided into 3 groups: Injury group, epineurium group, and epineurium-with-cell group, that rat hair follicular stem cells (rHFSCs) were injected into the site of nerve cut. HFSCs were labeled with BrdU, and double-labeling immunofluorescence was performed to study survival and differentiation of the grafted cells. After 8 weeks, electrophysiological, histological and immunocytochemical analysis assessments were performed. Results: The results of this study show that rat hair follicle stem cells are suitable for cell culture, proliferation and differentiation. The results suggest that transplantation of rat hair follicle stem cells had the potential capability of regenerating sciatic nerve injury; moreover, evidence of electrophysiology and histology show that Epineurium with cell repair was more effective than the other experimental group (p<0.05). Conclusion: The achieved results propose that hair follicle stem cell would improve axonal growth and functional recovery after peripheral nerve injury.


Cells ◽  
2020 ◽  
Vol 9 (11) ◽  
pp. 2497
Author(s):  
Zhong Huang ◽  
Rebecca Powell ◽  
James B. Phillips ◽  
Kirsten Haastert-Talini

Schwann cells play a crucial role in successful peripheral nerve repair and regeneration by supporting both axonal growth and myelination. Schwann cells are therefore a feasible option for cell therapy treatment of peripheral nerve injury. However, sourcing human Schwann cells at quantities required for development beyond research is challenging. Due to their availability, rapid in vitro expansion, survival, and integration within the host tissue, stem cells have attracted considerable attention as candidate cell therapies. Among them, induced pluripotent stem cells (iPSCs) with the associated prospects for personalized treatment are a promising therapy to take the leap from bench to bedside. In this critical review, we firstly focus on the current knowledge of the Schwann cell phenotype in regard to peripheral nerve injury, including crosstalk with the immune system during peripheral nerve regeneration. Then, we review iPSC to Schwann cell derivation protocols and the results from recent in vitro and in vivo studies. We finally conclude with some prospects for the use of iPSCs in clinical settings.


2018 ◽  
Vol 46 (6) ◽  
pp. 898-904 ◽  
Author(s):  
Mehrnaz Moattari ◽  
Homa Mohseni Kouchesfehani ◽  
Gholamreza Kaka ◽  
Seyed Homayoon Sadraie ◽  
Majid Naghdi

2019 ◽  
Vol 59 (5) ◽  
pp. 603-610 ◽  
Author(s):  
Benjamin K. Schilling ◽  
M. Asher Schusterman ◽  
Deok‐Yeol Kim ◽  
Alexander J. Repko ◽  
Katarina C. Klett ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document