scholarly journals Site-specific Mutation of the Human c-Ha-ras Transgene Induced by Dimethylbenzanthracene Causes Tissue-specific Tumors in Mice

1994 ◽  
Vol 85 (8) ◽  
pp. 801-807 ◽  
Author(s):  
Satoru-Takahiro Doi ◽  
Minoru Kimura ◽  
Motoya Katsuki
Biochemistry ◽  
1999 ◽  
Vol 38 (3) ◽  
pp. 1144-1152 ◽  
Author(s):  
Ingrid Pontén ◽  
Jane M. Sayer ◽  
Anthony S. Pilcher ◽  
Haruhiko Yagi ◽  
Subodh Kumar ◽  
...  

2002 ◽  
Vol 70 (2) ◽  
pp. 787-793 ◽  
Author(s):  
Patricia Guerry ◽  
Christine M. Szymanski ◽  
Martina M. Prendergast ◽  
Thomas E. Hickey ◽  
Cheryl P. Ewing ◽  
...  

ABSTRACT The outer cores of the lipooligosaccharides (LOS) of many strains of Campylobacter jejuni mimic human gangliosides in structure. A population of cells of C. jejuni strain 81-176 produced a mixture of LOS cores which consisted primarily of structures mimicking GM2 and GM3 gangliosides, with minor amounts of structures mimicking GD1b and GD2. Genetic analyses of genes involved in the biosynthesis of the outer core of C. jejuni 81-176 revealed the presence of a homopolymeric tract of G residues within a gene encoding CgtA, an N-acetylgalactosaminyltransferase. Variation in the number of G residues within cgtA affected the length of the open reading frame, and these changes in cgtA corresponded to a change in LOS structure from GM2 to GM3 ganglioside mimicry. Site-specific mutation of cgtA in 81-176 resulted in a major LOS core structure that lacked GalNAc and resembled GM3 ganglioside. Compared to wild-type 81-176, the cgtA mutant showed a significant increase in invasion of INT407 cells. In comparison, a site-specific mutation of the neuC1 gene resulted in the loss of sialic acid in the LOS core and reduced resistance to normal human serum but had no affect on invasion of INT407 cells.


1987 ◽  
Vol 6 (5) ◽  
pp. 1233-1244 ◽  
Author(s):  
R. B. Parekh ◽  
A. G. Tse ◽  
R. A. Dwek ◽  
A. F. Williams ◽  
T. W. Rademacher

2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Michael Skaro ◽  
Marcus Hill ◽  
Yi Zhou ◽  
Shannon Quinn ◽  
Melissa B. Davis ◽  
...  

Abstract Background & Aims Cancer metastasis into distant organs is an evolutionarily selective process. A better understanding of the driving forces endowing proliferative plasticity of tumor seeds in distant soils is required to develop and adapt better treatment systems for this lethal stage of the disease. To this end, we aimed to utilize transcript expression profiling features to predict the site-specific metastases of primary tumors and second, to identify the determinants of tissue specific progression. Methods We used statistical machine learning for transcript feature selection to optimize classification and built tree-based classifiers to predict tissue specific sites of metastatic progression. Results We developed a novel machine learning architecture that analyzes 33 types of RNA transcriptome profiles from The Cancer Genome Atlas (TCGA) database. Our classifier identifies the tumor type, derives synthetic instances of primary tumors metastasizing to distant organs and classifies the site-specific metastases in 16 types of cancers metastasizing to 12 locations. Conclusions We have demonstrated that site specific metastatic progression is predictable using transcriptomic profiling data from primary tumors and that the overrepresented biological processes in tumors metastasizing to congruent distant loci are highly overlapping. These results indicate site-specific progression was organotropic and core features of biological signaling pathways are identifiable that may describe proliferative plasticity in distant soils.


Gene Families ◽  
2001 ◽  
pp. 195-202
Author(s):  
JI-LONG CHEN ◽  
JIE LIU ◽  
KATHRYN HUISINGA ◽  
PAMELA GEYER ◽  
JAMES MORRIS ◽  
...  

PLoS ONE ◽  
2013 ◽  
Vol 8 (3) ◽  
pp. e60216 ◽  
Author(s):  
Benjamin Davies ◽  
Graham Davies ◽  
Christopher Preece ◽  
Rathi Puliyadi ◽  
Dorota Szumska ◽  
...  

2022 ◽  
Vol 119 (3) ◽  
pp. e2117451119
Author(s):  
Justin M. Shaffer ◽  
Iva Greenwald

Conditional gene expression is a powerful tool for genetic analysis of biological phenomena. In the widely used “lox-stop-lox” approach, insertion of a stop cassette consisting of a series of stop codons and polyadenylation signals flanked by lox sites into the 5′ untranslated region (UTR) of a gene prevents expression until the cassette is excised by tissue-specific expression of Cre recombinase. Although lox-stop-lox and similar approaches using other site-specific recombinases have been successfully used in many experimental systems, this design has certain limitations. Here, we describe the Floxed exon (Flexon) approach, which uses a stop cassette composed of an artificial exon flanked by artificial introns, designed to cause premature termination of translation and nonsense-mediated decay of the mRNA and allowing for flexible placement into a gene. We demonstrate its efficacy in Caenorhabditis elegans by showing that, when promoters that cause weak and/or transient cell-specific expression are used to drive Cre in combination with a gfp(flexon) transgene, strong and sustained expression of green fluorescent protein (GFP) is obtained in specific lineages. We also demonstrate its efficacy in an endogenous gene context: we inserted a flexon into the Argonaute gene rde-1 to abrogate RNA interference (RNAi), and restored RNAi tissue specifically by expression of Cre. Finally, we describe several potential additional applications of the Flexon approach, including more precise control of gene expression using intersectional methods, tissue-specific protein degradation, and generation of genetic mosaics. The Flexon approach should be feasible in any system where a site-specific recombination-based method may be applied.


Sign in / Sign up

Export Citation Format

Share Document