scholarly journals Interaction of endothelial cell-selective adhesion molecule and MAGI-1 promotes mature cell-cell adhesion via activation of RhoA

2010 ◽  
Vol 15 (4) ◽  
pp. 385-396 ◽  
Author(s):  
Ritsuko Kimura ◽  
Tatsuro Ishida ◽  
Masamitsu Kuriyama ◽  
Ken-ichi Hirata ◽  
Yoshitake Hayashi
1997 ◽  
Vol 8 (7) ◽  
pp. 1329-1341 ◽  
Author(s):  
N Sheibani ◽  
P J Newman ◽  
W A Frazier

Expression of thrombospondin-1 (TS1) in polyoma middle-sized T (tumor)-transformed mouse brain endothelial cells (bEND.3) restores a normal phenotype and suppresses their ability to form hemangiomas in mice. We show that TS1 expression results in complete suppression of platelet-endothelial cell adhesion molecule-1 (PECAM-1) expression and altered cell-cell interactions in bEND.3 cells. To further investigate the role of PECAM-1 in regulation of endothelial cell-cell interactions and morphogenesis, we expressed human (full length) or murine (delta 15) PECAM-1 isoforms in TS1-transfected bEND.3 (bEND/TS) cells. Expression of either human or murine PECAM-1 resulted in an enhanced ability to organize and form networks of cords on Matrigel, an effect that was specifically blocked by antibodies to PECAM-1. Anti-PECAM-1 antibodies also inhibited tube formation in Matrigel by normal human umbilical vein endothelial cells. However, PECAM-1-transfected bEND/TS cells did not regain the ability to form hemangiomas in mice and the expressed PECAM-1, unlike the endogenous PECAM-1 expressed in bEND.3 cells, failed to localize to sites of cell-cell contact. This may be, in part, attributed to the different isoforms of PECAM-1 expressed in bEND.3 cells. Using reverse transcription-polymerase chain reaction, we determined that bEND.3 cells express mRNA encoding six different PECAM-1 isoforms, the isoform lacking both exons 14 and 15 (delta 14&15) being most abundant. Expression of the murine delta 14&15 PECAM-1 isoform in bEND/TS cells resulted in a similar phenotype to that described for the full-length human or murine delta 15 PECAM-1 isoform. The delta 14&15 isoform, despite the lack of exon 14, failed to localize to sites of cell-cell contact even in clones that expressed it at very high levels. Thus, contrary to recent reports, lack of exon 14 is not sufficient to result in junctional localization of PECAM-1 isoforms in bEND/TS cells.


1991 ◽  
Vol 114 (5) ◽  
pp. 1059-1068 ◽  
Author(s):  
S M Albelda ◽  
W A Muller ◽  
C A Buck ◽  
P J Newman

PECAM-1 is a 130-120-kD integral membrane glycoprotein found on the surface of platelets, at endothelial intercellular junctions in culture, and on cells of myeloid lineage. Previous studies have shown that it is a member of the immunoglobulin gene superfamily and that antibodies against the bovine form of this protein (endoCAM) can inhibit endothelial cell-cell interactions. These data suggest that PECAM-1 may function as a vascular cell adhesion molecule. The function of this molecule has been further evaluated by transfecting cells with a full-length PECAM-1 cDNA. Transfected COS-7, mouse 3T3 and L cells expressed a 130-120-kD glycoprotein on their cell surface that reacted with anti-PECAM-1 polyclonal and monoclonal antibodies. COS-7 and 3T3 cell transfectants formed cell-cell junctions that were highly enriched in PECAM-1, reminiscent of its distribution at endothelial cell-cell borders. In contrast, this protein remained diffusely distributed within the plasma membrane of PECAM-1 transfected cells that were in contact with mock transfectants. Mouse L cells stably transfected with PECAM-1 demonstrated calcium-dependent aggregation that was inhibited by anti-PECAM antibodies. These results demonstrate that PECAM-1 mediates cell-cell adhesion and support the idea that it may be involved in some of the interactive events taking place during thrombosis, wound healing, and angiogenesis.


1990 ◽  
Vol 110 (4) ◽  
pp. 1227-1237 ◽  
Author(s):  
S M Albelda ◽  
P D Oliver ◽  
L H Romer ◽  
C A Buck

Cell-cell adhesion is controlled by many molecules found on the cell surface. In addition to the constituents of well-defined junctional structures, there are the molecules that are thought to play a role in the initial interactions of cells and that appear at precise times during development. These include the cadherins and cell adhesion molecules (CAMs). Representatives of these families of adhesion molecules have been isolated from most of the major tissues. The notable exception is the vascular endothelium. Here we report the identification of a cell surface molecule designated "endoCAM" (endothelial Cell Adhesion Molecule), which may function as an endothelial cell-cell adhesion molecule. EndoCAM is a 130-kD glycoprotein expressed on the surface of endothelial cells both in culture and in situ. It is localized to the borders of contiguous endothelial cells. It is also present on platelets and white blood cells. Antibodies against endoCAM prevent the initial formation of endothelial cell-cell contacts. Despite similarities in size and intercellular location, endoCAM does not appear to be a member of the cadherin family of adhesion receptors. The serologic and protease susceptibility characteristics of endoCAM are different from those of the known cadherins, including an endogenous endothelial cadherin. Although the precise biologic function of endoCAM has not been determined, it appears to be one of the molecules responsible for regulating endothelial cell-cell adhesion processes and may be involved in platelet and white blood cell interactions with the endothelium.


2005 ◽  
Vol 173 (4S) ◽  
pp. 170-170
Author(s):  
Maxine G. Tran ◽  
Miguel A. Esteban ◽  
Peter D. Hill ◽  
Ashish Chandra ◽  
Tim S. O'Brien ◽  
...  

1998 ◽  
Vol 5 (2-3) ◽  
pp. 179-188 ◽  
Author(s):  
MICHAEL J EPPIHIMER ◽  
J A N I C E RUSELL ◽  
R O B E R T LANGLEY ◽  
G I N A VALLIEN ◽  
DONALD C ANDERSON ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document