scholarly journals Independent component analysis as a tool for ground deformation analysis

2007 ◽  
Vol 168 (3) ◽  
pp. 1305-1310 ◽  
Author(s):  
M. Bottiglieri ◽  
M. Falanga ◽  
U. Tammaro ◽  
F. Obrizzo ◽  
P. De Martino ◽  
...  
2012 ◽  
Vol 212-213 ◽  
pp. 859-862
Author(s):  
Xin Wu Zhan ◽  
Wu Jiao Dai

Independent component analysis (ICA) is a recent and well-known technique used to separate mixtures of signals. It can separate independent components from mixed signals and has many advantages in blind signal separation, redundancy removal and processing of frequency aliasing problems. Deformation monitoring data can be regarded as the digital signals series which is composed of different frequency. After making test on ICA in processing dam observation data we can draw a conclusion that it is practical and applicative for ICA to evaluate the stability of the dam and reflect the working condition of dam.


2020 ◽  
Vol 2020 (14) ◽  
pp. 357-1-357-6
Author(s):  
Luisa F. Polanía ◽  
Raja Bala ◽  
Ankur Purwar ◽  
Paul Matts ◽  
Martin Maltz

Human skin is made up of two primary chromophores: melanin, the pigment in the epidermis giving skin its color; and hemoglobin, the pigment in the red blood cells of the vascular network within the dermis. The relative concentrations of these chromophores provide a vital indicator for skin health and appearance. We present a technique to automatically estimate chromophore maps from RGB images of human faces captured with mobile devices such as smartphones. The ultimate goal is to provide a diagnostic aid for individuals to monitor and improve the quality of their facial skin. A previous method approaches the problem as one of blind source separation, and applies Independent Component Analysis (ICA) in camera RGB space to estimate the chromophores. We extend this technique in two important ways. First we observe that models for light transport in skin call for source separation to be performed in log spectral reflectance coordinates rather than in RGB. Thus we transform camera RGB to a spectral reflectance space prior to applying ICA. This process involves the use of a linear camera model and Principal Component Analysis to represent skin spectral reflectance as a lowdimensional manifold. The camera model requires knowledge of the incident illuminant, which we obtain via a novel technique that uses the human lip as a calibration object. Second, we address an inherent limitation with ICA that the ordering of the separated signals is random and ambiguous. We incorporate a domain-specific prior model for human chromophore spectra as a constraint in solving ICA. Results on a dataset of mobile camera images show high quality and unambiguous recovery of chromophores.


PIERS Online ◽  
2005 ◽  
Vol 1 (6) ◽  
pp. 750-753 ◽  
Author(s):  
Anxing Zhao ◽  
Yansheng Jiang ◽  
Wenbing Wang

Sign in / Sign up

Export Citation Format

Share Document