scholarly journals Time-dependent convection models of mantle thermal structure constrained by seismic tomography and geodynamics: implications for mantle plume dynamics and CMB heat flux

2012 ◽  
Vol 190 (2) ◽  
pp. 785-815 ◽  
Author(s):  
P. Glišović ◽  
A. M. Forte ◽  
R. Moucha
1980 ◽  
Vol 23 (8) ◽  
pp. 1532 ◽  
Author(s):  
H. Schamel ◽  
Ch. Sack
Keyword(s):  

2021 ◽  
Author(s):  
Richard Blythman ◽  
Sajad Alimohammadi ◽  
Nicholas Jeffers ◽  
Darina B. Murray ◽  
Tim Persoons

Abstract While numerous applied studies have successfully demonstrated the feasibility of unsteady cooling solutions, a consensus has yet to be reached on the local instantaneous conditions that result in heat transfer enhancement. The current work aims to experimentally validate a recent analytical solution (on a local time-dependent basis) for the common flow condition of a fully-developed incompressible pulsating flow in a uniformly-heated vessel. The experimental setup is found to approximate the ideal constant heat flux boundary condition well, especially for the decoupled unsteady scenario where the amplitude of the most significant secondary contributions (capacitance and lateral conduction) amounts to 1.2% and 0.2% of the generated heat flux, respectively. Overall, the experimental measurements for temperature and heat flux oscillations are found to coincide well with a recent analytical solution to the energy equation by the authors. Furthermore, local time-dependent heat flux enhancements and degradations are observed to be qualitatively similar to those of wall shear stress from a previous study, suggesting that the thermal performance is indeed influenced by hydrodynamic behaviour.


2018 ◽  
Vol 613 ◽  
pp. A75 ◽  
Author(s):  
P. Kurfürst ◽  
A. Feldmeier ◽  
J. Krtička

Context. Evolution of massive stars is affected by a significant loss of mass either via (nearly) spherically symmetric stellar winds or by aspherical mass-loss mechanisms, namely the outflowing equatorial disks. However, the scenario that leads to the formation of a disk or rings of gas and dust around massive stars is still under debate. It is also unclear how various forming physical mechanisms of the circumstellar environment affect its shape and density, as well as its kinematic and thermal structure. Aims. We study the hydrodynamic and thermal structure of optically thick, dense parts of outflowing circumstellar disks that may be formed around various types of critically rotating massive stars, for example, Be stars, B[e] supergiant (sgB[e]) stars or Pop III stars. We calculate self-consistent time-dependent models of temperature and density structure in the disk’s inner dense region that is strongly affected by irradiation from a rotationally oblate central star and by viscous heating. Methods. Using the method of short characteristics, we specify the optical depth of the disk along the line-of-sight from stellar poles. Within the optically thick dense region with an optical depth of τ > 2∕3 we calculate the vertical disk thermal structure using the diffusion approximation while for the optically thin outer layers we assume a local thermodynamic equilibrium with the impinging stellar irradiation. For time-dependent hydrodynamic modeling, we use two of our own types of hydrodynamic codes: two-dimensional operator-split numerical code based on an explicit Eulerian finite volume scheme on a staggered grid, and unsplit code based on the Roe’s method, both including full second-order Navier-Stokes shear viscosity. Results. Our models show the geometric distribution and contribution of viscous heating that begins to dominate in the central part of the disk for mass-loss rates higher than Ṁ ≳ 10−10 M⊙ yr−1. In the models of dense viscous disks with Ṁ > 10−8 M⊙ yr−1, the viscosity increases the central temperature up to several tens of thousands of Kelvins, however the temperature rapidly drops with radius and with distance from the disk midplane. The high mass-loss rates and high viscosity lead to instabilities with significant waves or bumps in density and temperature in the very inner disk region. Conclusions. The two-dimensional radial-vertical models of dense outflowing disks including the full Navier-Stokes viscosity terms show very high temperatures that are however limited to only the central disk cores inside the optically thick area, while near the edge of the optically thick region the temperature may be low enough for the existence of neutral hydrogen, for example.


2011 ◽  
Vol 3 (1) ◽  
pp. 431-452 ◽  
Author(s):  
E. Shalev ◽  
V. Lyakhovsky ◽  
Y. Weinstein ◽  
Z. Ben-Avraham

Abstract. Heat flux at the Arabian Shield is a significant component in reconstructing tectonic, seismic, and hydrologic models. In this paper we analyze temperature data from all the available oil and water wells in Israel. We show that the average heat flux in Israel is 40–45 mW m−2. A supporting evidence for the low heat flux is the relatively deep seismicity, extending almost to the mantle in the region. A Heat flux anomaly that exists in Northern Israel and Jordan could be attributed to groundwater flow or young magmatic activity (~100 000 years) that is common in this area. Xenoliths that yield relatively steep geothermal gradients could be the result of local heating by magmas or by lithospheric necking and shear heating. The higher Heat flux in Southern Israel and Jordan probably reflects the opening of the Red Sea and the Gulf of Eilat and does not reflect the average value of the Arabian Shield.


1984 ◽  
Vol 21 (2) ◽  
pp. 232-240 ◽  
Author(s):  
Garry K. C. Clarke ◽  
Sam G. Collins ◽  
David E. Thompson

Temperature measurements in a subpolar surge-type glacier reveal a distinctive thermal structure associated with the boundary between the ice reservoir and receiving areas. In the receiving area the glacier is cold based, but bottom temperature has increased as much as 0.5 °C between 1981 and 1982, and the basal heat flux is roughly 10 times the expected geothermal flux. Water percolation through permeable subglacial material is the probable energy source. Deformation of the substrate could destroy this drainage system and trigger a surge.


Sign in / Sign up

Export Citation Format

Share Document