Next-generation small RNA sequencing for microRNAs profiling in the honey beeApis mellifera

2010 ◽  
Vol 19 (6) ◽  
pp. 799-805 ◽  
Author(s):  
X. Chen ◽  
X. Yu ◽  
Y. Cai ◽  
H. Zheng ◽  
D. Yu ◽  
...  
PLoS ONE ◽  
2015 ◽  
Vol 10 (7) ◽  
pp. e0131336 ◽  
Author(s):  
Li Zhang ◽  
Pengfei Wei ◽  
Xudong Shen ◽  
Yuanwei Zhang ◽  
Bo Xu ◽  
...  

2017 ◽  
Vol 8 ◽  
Author(s):  
Nureyev F. Rodrigues ◽  
Ana P. Christoff ◽  
Guilherme C. da Fonseca ◽  
Franceli R. Kulcheski ◽  
Rogerio Margis

2016 ◽  
Vol 35 (5) ◽  
pp. 226-234 ◽  
Author(s):  
Bo Xu ◽  
Yuan-Wei Zhang ◽  
Sheng-Xia Zheng ◽  
Xian-Hong Tong ◽  
Yu-Sheng Liu

2020 ◽  
pp. 109158182096151
Author(s):  
Jennifer C. Shing ◽  
Kai Schaefer ◽  
Shaun E. Grosskurth ◽  
Andy H. Vo ◽  
Tatiana Sharapova ◽  
...  

Predictive indicators of testicular toxicity could improve drug development by allowing early in-life screening for this adverse effect before it becomes severe. We hypothesized that circulating microRNAs (miRNAs) could serve as testicular toxicity biomarkers in dogs. Herein, we describe the results of an exploratory study conducted to discover biomarkers of drug-induced testicular injury. Following a dose-selection study using the testicular toxicant ethylene glycol monomethyl ether (EGME), we chose a dose of 50 mg/kg/d EGME to avoid systemic toxicity and treated 2 groups of dogs (castrated, non-castrated) for 14 to 28 days. Castrated animals were used as negative controls to identify biomarkers specific for testicular toxicity because EGME can cause toxicity to organ systems in addition to the testis. Blood was collected daily during the dosing period, followed by recovery for 29 to 43 days with less frequent sampling. Dosing was well tolerated, resulting in mild-to-moderate degeneration in testes and epididymides. Global profiling of serum miRNAs at selected dosing and recovery time points was completed by small RNA sequencing. Bioinformatics data analysis using linear modeling demonstrated several circulating miRNAs that were differentially abundant during the dosing period compared with baseline and/or castrated control samples. Confirmatory reverse transcription quantitative polymerase chain reaction data in these animals was unable to detect sustained alterations of miRNAs in serum, except for 1 potential candidate cfa-miR-146b. Taken together, we report the results of a comprehensive exploratory study and suggest future directions for follow-up research to address the challenge of developing diagnostic biomarkers of testicular toxicity.


Diagnostics ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 964
Author(s):  
Sarka Benesova ◽  
Mikael Kubista ◽  
Lukas Valihrach

MicroRNAs (miRNAs) are a class of small RNA molecules that have an important regulatory role in multiple physiological and pathological processes. Their disease-specific profiles and presence in biofluids are properties that enable miRNAs to be employed as non-invasive biomarkers. In the past decades, several methods have been developed for miRNA analysis, including small RNA sequencing (RNA-seq). Small RNA-seq enables genome-wide profiling and analysis of known, as well as novel, miRNA variants. Moreover, its high sensitivity allows for profiling of low input samples such as liquid biopsies, which have now found applications in diagnostics and prognostics. Still, due to technical bias and the limited ability to capture the true miRNA representation, its potential remains unfulfilled. The introduction of many new small RNA-seq approaches that tried to minimize this bias, has led to the existence of the many small RNA-seq protocols seen today. Here, we review all current approaches to cDNA library construction used during the small RNA-seq workflow, with particular focus on their implementation in commercially available protocols. We provide an overview of each protocol and discuss their applicability. We also review recent benchmarking studies comparing each protocol’s performance and summarize the major conclusions that can be gathered from their usage. The result documents variable performance of the protocols and highlights their different applications in miRNA research. Taken together, our review provides a comprehensive overview of all the current small RNA-seq approaches, summarizes their strengths and weaknesses, and provides guidelines for their applications in miRNA research.


Sign in / Sign up

Export Citation Format

Share Document