The physical properties of accelerated Portland cement for endodontic use

2007 ◽  
Vol 0 (0) ◽  
pp. 071011095702004-??? ◽  
Author(s):  
J. Camilleri
Materials ◽  
2019 ◽  
Vol 12 (10) ◽  
pp. 1707 ◽  
Author(s):  
Yu-You Wu ◽  
Longxin Que ◽  
Zhaoyang Cui ◽  
Paul Lambert

Concrete made from ordinary Portland cement is one of the most widely used construction materials due to its excellent compressive strength. However, concrete lacks ductility resulting in low tensile strength and flexural strength, and poor resistance to crack formation. Studies have demonstrated that the addition of graphene oxide (GO) nanosheet can effectively enhance the compressive and flexural properties of ordinary Portland cement paste, confirming GO nanosheet as an excellent candidate for using as nano-reinforcement in cement-based composites. To date, the majority of studies have focused on cement pastes and mortars. Only limited investigations into concretes incorporating GO nanosheets have been reported. This paper presents an experimental investigation on the slump and physical properties of concrete reinforced with GO nanosheets at additions from 0.00% to 0.08% by weight of cement and a water–cement ratio of 0.5. The study demonstrates that the addition of GO nanosheets improves the compressive strength, flexural strength, and split tensile strength of concrete, whereas the slump of concrete decreases with increasing GO nanosheet content. The results also demonstrate that 0.03% by weight of cement is the optimum value of GO nanosheet dosage for improving the split tensile strength of concrete.


2015 ◽  
Vol 77 (32) ◽  
Author(s):  
David Yeoh ◽  
Koh Heng Boon ◽  
Norwati Jamaluddin

This research is an exploratory experiment into sulfur concrete used not as a complete replacement of cement but as an additional material in percentage of the cement content. The aim of this research was to explore the possible appreciation of mechanical and physical properties of concrete containing sulfur with percentages of 1%, 5% and 10% of the cement content. The sulfur used here was not heat-activated, hence the binding effect in sulfur was absent. The experimental results revealed that concrete containing sulfur did not perform better in their strength properties, both compressive strength and flexural strength. The physical properties such as water penetration and water absorption for concrete containing sulfur also showed poor performance in comparison to ordinary Portland cement concrete. Such phenomena are very likely due to the sulfur not being activated by heat. Carbonation test did not show good results as a longer term of testing is required. Drying shrinkage property was found to be encouraging in that concrete containing 10% sulfur had quite significant reduction in drying shrinkage as opposed to ordinary Portland cement concrete. 


2015 ◽  
Vol 1088 ◽  
pp. 411-414 ◽  
Author(s):  
Francisco Augusto Zago Marques ◽  
Carlos Eduardo G. da Silva ◽  
André Luis Christoforo ◽  
Francisco Antonio Rocco Lahr ◽  
Túlio Hallak Panzera ◽  
...  

This research evaluated, with the of the analyses of variance (ANOVA), a composite material based on epoxy matrix phase reinforced with Portland cement (CP-II) particles (0%wt [100%wt of resin], 20%wt, 40%wt, 60%wt). The response-variable investigated were modulus of elasticity (E) and compressive strength (S), bulk density (ρB), apparent density (ρA) and porosity (P). The highest values of the modulus of elasticity were provided from the composites manufactured with 40wt% of cement addition. The inclusion of 60% of cement implies in a reduction in the mechanical properties when compared with the results of the composite manufactured with 40% of cement. For the physical properties, the gradually inclusion of cement provides increasing in the density of the composites, and reduce the porosity of the materials manufactured.


Sign in / Sign up

Export Citation Format

Share Document