Measurement of Residence Time Distribution of Fluid and Particles in Turbulent Flow

1991 ◽  
Vol 56 (1) ◽  
pp. 255-256 ◽  
Author(s):  
C. W. HONG ◽  
B. SUN PAN ◽  
R. T. TOLEDO ◽  
K. M. CHIOU
1964 ◽  
Vol 17 (8) ◽  
pp. 821 ◽  
Author(s):  
RCL Bosworth ◽  
CM Groden

When a reacting substance or mixture is caused to flow in a cylindrical reactor, all portions of the stream will not flow at the same rate and will exhibit different residence times and, accordingly, are subject to different extents of degrees of reaction. The average degrees of reaction following the residence time distribution proper to laminar flow are given in the earlier publication1 and this paper extends the treatment to that of turbulent flow. In the earlier treatment of laminar flow the ratio of average extent of reaction with non-interacting streams to that of complete intermingling, or the C/Cm, is plotted against the ratio of the times of flow with those of reaction (S). The C/Cm versus S curves are all above unity and increase with increasing S, with the exception of very high orders of chemical reaction for which values of C/Cm are all unity. In the case of turbulent flow the values of C/Cm are more nearly unity at all values of S.


2021 ◽  
Vol 32 (2) ◽  
pp. 611-618
Author(s):  
Atena Dehghani Kiadehi ◽  
Mikel Leturia ◽  
Franco Otaola ◽  
Aissa Ould-Dris ◽  
Khashayar Saleh

Metals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 430
Author(s):  
Changyou Ding ◽  
Hong Lei ◽  
Hong Niu ◽  
Han Zhang ◽  
Bin Yang ◽  
...  

The residence time distribution (RTD) curve is widely applied to describe the fluid flow in a tundish, different tracer mass concentrations and different tracer volumes give different residence time distribution curves for the same flow field. Thus, it is necessary to have a deep insight into the effects of the mass concentration and the volume of tracer solution on the residence time distribution curve. In order to describe the interaction between the tracer and the fluid, solute buoyancy is considered in the Navier–Stokes equation. Numerical results show that, with the increase of the mass concentration and the volume of the tracer, the shape of the residence time distribution curve changes from single flat peak to single sharp peak and then to double peaks. This change comes from the stratified flow of the tracer. Furthermore, the velocity difference number is introduced to demonstrate the importance of the density difference between the tracer and the fluid.


Sign in / Sign up

Export Citation Format

Share Document