Evaluation of Ascorbic Acid as a Quorum-sensing Analogue to Control Growth, Sporulation, and Enterotoxin Production in Clostridium perfringens

2006 ◽  
Vol 69 (3) ◽  
pp. FMS72-FMS78 ◽  
Author(s):  
J. S. NOVAK ◽  
P. M. FRATAMICO
2010 ◽  
Author(s):  
Armitra Jackson ◽  
Gary Sullivan ◽  
Joseph G. Sebranek ◽  
James S. Dickson

2017 ◽  
Vol 85 (6) ◽  
Author(s):  
Qiang Yu ◽  
Dion Lepp ◽  
Iman Mehdizadeh Gohari ◽  
Tao Wu ◽  
Hongzhuan Zhou ◽  
...  

ABSTRACT Clostridium perfringens encodes at least two different quorum sensing (QS) systems, the Agr-like and LuxS, and recent studies have highlighted their importance in the regulation of toxin production and virulence. The role of QS in the pathogenesis of necrotic enteritis (NE) in poultry and the regulation of NetB, the key toxin involved, has not yet been investigated. We have generated isogenic agrB-null and complemented strains from parent strain CP1 and demonstrated that the virulence of the agrB-null mutant was strongly attenuated in a chicken NE model system and restored by complementation. The production of NetB, a key NE-associated toxin, was dramatically reduced in the agrB mutant at both the transcriptional and protein levels, though not in a luxS mutant. Transwell assays confirmed that the Agr-like QS system controls NetB production through a diffusible signal. Global gene expression analysis of the agrB mutant identified additional genes modulated by Agr-like QS, including operons related to phospholipid metabolism and adherence, which may also play a role in NE pathogenesis. This study provides the first evidence that the Agr-like QS system is critical for NE pathogenesis and identifies a number of Agr-regulated genes, most notably netB, that are potentially involved in mediating its effects. The Agr-like QS system thus may serve as a target for developing novel interventions to prevent NE in chickens.


1972 ◽  
Vol 110 (1) ◽  
pp. 378-391 ◽  
Author(s):  
Charles L. Duncan ◽  
Dorothy H. Strong ◽  
Madeleine Sebald

2021 ◽  
Author(s):  
Bengt H. Gless ◽  
Benjamin Svejdal Bejder ◽  
Martin S. Bojer ◽  
Hanne Ingmer ◽  
Christian Adam Olsen

Group behavior in many bacteria relies on chemically induced communication called quorum sensing (QS), which plays important roles in regulation of colonization, biofilm formation, and virulence. In Gram-positive bacteria, QS is often mediated by cyclic ribosomally synthesized and posttranslationally modified peptides (RiPPs). In staphylococci for example, most of these so-called autoinducing peptides (AIPs) contain a conserved thiolactone functionality, which has been predicted to constitute a structural feature of AIPs from other species as well. Here, we show that pentameric AIPs from <i>Lactobacillus plantarum, Clostridium perfringens, </i>and<i> Listeria monocytogenes </i>that were previously presumed to be thiolactone-containing structures readily rearrange to become homodetic cyclopeptides. This finding has implications for the developing understanding of the cross-species communication of bacteria and may help guide the discovery of peptide ligands to perturb their function.


2002 ◽  
Vol 65 (10) ◽  
pp. 1667-1669 ◽  
Author(s):  
SANTOS GARCÍA ◽  
MIRNA ARAIZA ◽  
MARIVEL GÓMEZ ◽  
NORMA HEREDIA

The extracts of 14 plants used in the traditional medicine of Mexico were evaluated for their effects on the growth, spore formation, and enterotoxin production of Clostridium perfringens type A. The extracts of Psidium guajava L., Haemotoxylon brasiletto, and Euphobia prostata were the most effective inhibitors of growth, spore formation, and enterotoxin production. No enterotoxins were detected when extracts were added to the media at less than the MIC for growth.


1997 ◽  
pp. 471-487 ◽  
Author(s):  
Stephen B. Melville ◽  
Renée E. Collie ◽  
Bruce A. McClane

2015 ◽  
Vol 83 (6) ◽  
pp. 2430-2442 ◽  
Author(s):  
Jorge E. Vidal ◽  
Joshua R. Shak ◽  
Adrian Canizalez-Roman

Clostridium perfringensstrains produce severe diseases, including myonecrosis and enteritis necroticans, in humans and animals. Diseases are mediated by the production of potent toxins that often damage the site of infection, e.g., skin epithelium during myonecrosis. In planktonic cultures, the regulation of important toxins, such as CPA, CPB, and PFO, is controlled by theC. perfringensAgr-like (CpAL) quorum sensing (QS) system. Strains also encode a functional LuxS/AI-2 system. AlthoughC. perfringensstrains form biofilm-like structures, the regulation of biofilm formation is poorly understood. Therefore, our studies investigated the role of CpAL and LuxS/AI-2 QS systems and of QS-regulated factors in controlling the formation of biofilms. We first demonstrate that biofilm production by reference strains differs depending on the culture medium. Increased biomass correlated with the presence of extracellular DNA in the supernatant, which was released by lysis of a fraction of the biofilm population and planktonic cells. Whereas ΔagrBmutant strains were not able to produce biofilms, a ΔluxSmutant produced wild-type levels. The transcript levels of CpAL-regulatedcpaandpfoAgenes, but notcpb, were upregulated in biofilms compared to planktonic cultures. Accordingly, Δcpaand ΔpfoAmutants, in type A (S13) or type C (CN3685) backgrounds, were unable to produce biofilms, whereas CN3685Δcpbmade wild-type levels. Biofilm formation was restored in complemented Δcpa/cpaand ΔpfoA/pfoAstrains. Confocal microscopy studies further detected CPA partially colocalizing with eDNA on the biofilm structure. Thus, CpAL regulates biofilm formation inC. perfringensby increasing levels of certain toxins required to build biofilms.


Sign in / Sign up

Export Citation Format

Share Document