Determination of the calorific value of gum arabic in rats using modified versions of the growth bioassay and the digestibility assay

2009 ◽  
Vol 44 (4) ◽  
pp. 847-853
Author(s):  
Chris J. Smith ◽  
Alan R. Menzies ◽  
Peter A. Williams ◽  
Glyn O. Phillips
Keyword(s):  
2020 ◽  
Vol 13 (2) ◽  
pp. 105-109
Author(s):  
E. S. Dremicheva

This paper presents a method of sorption using peat for elimination of emergency spills of crude oil and petroleum products and the possibility of energy use of oil-saturated peat. The results of assessment of the sorbent capacity of peat are presented, with waste motor oil and diesel fuel chosen as petroleum products. Natural peat has been found to possess sorption properties in relation to petroleum products. The sorbent capacity of peat can be observed from the first minutes of contact with motor oil and diesel fuel, and significantly depends on their viscosity. For the evaluation of thermal properties of peat saturated with petroleum products, experimental studies have been conducted on determination of moisture and ash content of as-fired fuel. It is shown that adsorbed oil increases the moisture and ash content of peat in comparison with the initial sample. Therefore, when intended for energy use, peat saturated with petroleum products is to be subjected to additional drying. Simulation of net calorific value has been performed based on the calorific values of peat and petroleum products with different ratios of petroleum product content in peat and for a saturated peat sample. The obtained results are compared with those of experiments conducted in a calorimetric bomb and recalculated for net calorific value. A satisfactory discrepancy is obtained, which amounts to about 12%. Options have been considered providing for combustion of saturated peat as fuel (burnt per se and combined with a solid fuel) and processing it to produce liquid, gaseous and solid fuels. Peat can be used to solve environmental problems of elimination of emergency spills of crude oil and petroleum products and as an additional resource in solving the problem of finding affordable energy.


2018 ◽  
Vol 54 (2A) ◽  
pp. 56
Author(s):  
Phung Chi Vy

Domestic solid wastes are classified into 10 samples of 04 groups with different sizes: 2 samples with sizes under and over 120 mm (M1-1, M1-2); 2 samples with sizes under and over 80 mm (M2-1, M2-2); 2 samples with sizes under and over 40 mm (M3-1, M3-2); 4 samples with sizes under 40 mm, 40 to 80 mm, 80 to 120 mm and over 120 mm (M4-1, M4-2, M4-3, M4-4). Results of sorting 10 solid waste samples into food, cloth, wood, plastic, paper, rubber/leather, metal, glass, other organic and inorganic components shown that recycled combustible, non-recycled combustible portions are ranged from 15,46 to 93,90 %, from 5,34 to 80,17 %, respectively. The density of 10 compressed garbage samples is ranged from 525,9 to 2016,7 kg/m3; moisture contents are ranged from 18.03 to 20.92 %. Ash content is ranged from 1.12 to 9.49 % dry weight; Calorific value is ranged from 3164,9 to 5757,0 kcal/kg of garbage. The volume of leached water from 10 kg wet garbage pressed by 250 kg load in 2 days is 300 ml (equivalent to 327,1 g). Results of elemental composition analysis shown that the contents of C, H, N, Cl, S are ranged from 35,00 to 51,96, from 6,01 to 6,23, from 0,41 to 0,88, from 0,44 to 0,56, from 0,14 to 0,84 %, respectively. On this basis, the author have proposed a waste-to-energy plant with capacity of 250 tons of waste/day to generate the electricity with capacity of 17,0 MW/day.


Sign in / Sign up

Export Citation Format

Share Document