Aeromonas hydrophila B-haemolysin: purification and examination of its role in virulence in 0-group channel catfish, Ictalurus punctatus (Rafinesque)

1986 ◽  
Vol 9 (1) ◽  
pp. 55-61 ◽  
Author(s):  
R. L. THUNE ◽  
MAUREEN C. JOHNSON ◽  
T. E. GRAHAM ◽  
R. L. AMBORSKI

<em>Abstract</em>.—U.S. Game and Fish agencies and farm-pond owners throughout the United States use commercially produced channel catfish <em>Ictalurus punctatus </em>fingerlings transported from the southern United States for supplemental stocking. We conducted six trials to examine whether pathogen load, body condition, and select environmental factors influence fingerling survival following transport and cage stocking. Fingerlings were sampled prior to stocking and weekly for the following 3 weeks. Weights and lengths were measured, and a relative condition index was used to quantify body condition. Skin scrapings and gill clippings were examined microscopically for pathogens, and posterior kidney was assayed for <em>Aeromonas hydrophila</em>. Mortality was either less than 10% (four trials) or catastrophic (two trials). A Columnaris disease epizootic was associated with ~50% mortality in one trial, and a red sore disease epizootic was associated with ~80% mortality in another. Body condition or other pathogens, present initially or acquired in study ponds, were not associated with high mortality. The first week appears to be critical for the survival of channel catfish fingerlings following transport.


Aquaculture ◽  
2018 ◽  
Vol 482 ◽  
pp. 1-8 ◽  
Author(s):  
Eric Peatman ◽  
Haitham Mohammed ◽  
Augustus Kirby ◽  
Craig A. Shoemaker ◽  
Mediha Yildirim-Aksoy ◽  
...  

1981 ◽  
Vol 38 (4) ◽  
pp. 463-466 ◽  
Author(s):  
D. H. Lewis

Immunoenzyme techniques were developed for detecting subclinical infections of Yersinia ruckeri and differentiating acute yersiniosis from motile aeromonas septicemia in channel catfish (Ictalurus punctatus). Immunoenzyme techniques were comparable to immunofluorescence and cultural procedures for detecting and differentiating Y. ruckeri and Aeromonas hydrophilia infections in catfish. The availability of immunoenzyme microscopic techniques extends immunostaining microscopy to laboratories possessing only conventional microscopes.Key words: Aeromonas hydrophila, EIA, ELISA, enteric redmouth disease, enzyme labeled antibody, fluorescent antibody, HRM, ictalurid, motile aeromonas septicemia, Yersinia ruckeri


2020 ◽  
Author(s):  
Priscilla Carmen Barger ◽  
Mark R Liles ◽  
Benjamin H Beck ◽  
Joseph C Newton

Abstract Background: Hypervirulent Aeromonas hydrophila (vAh) is a pathogen in freshwater aquaculture that results in the loss of over 3 million pounds of marketable channel catfish, Ictalurus punctatus, and catfish hybrids (I. punctatus, ♀ x blue catfish, I. furcatus, ♂) each year from freshwater catfish production systems in Alabama, U.S.A. vAh isolates are clonal in nature and are genetically unique from, and significantly more virulent than, traditional A. hydrophila isolates from fish. Even with the increased virulence, natural infections cannot be reproduced in aquaria challenges making it difficult to determine modes of infection and the pathophysiology behind the devastating mortalities that are commonly observed. Despite the intimate connection between environmental adaptation and plastic response, the role of environmental adaption on vAh pathogenicity and virulence has not been previously explored. In this study, secreted proteins of vAh cultured as free-living planktonic cells and within a biofilm were compared to elucidate the role of biofilm growth on virulence. Results: Functional proteolytic assays found significantly increased degradative activity in biofilm secretomes; in contrast, planktonic secretomes had significantly increased hemolytic activity, suggesting higher toxigenic potential. Intramuscular injection challenges in a channel catfish model showed that in vitro degradative activity translated into in vivo tissue destruction. Identification of secreted proteins by HPLC-MS/MS revealed the presence of many putative virulence proteins under both growth conditions. Biofilm grown vAh produced higher levels of proteolytic enzymes and adhesins, whereas planktonically grown cells secreted higher levels of toxins, porins, and fimbrial proteins. Conclusions: This study is the first comparison of the secreted proteomes of vAh when grown in two distinct ecological niches. These data on the adaptive physiological response of vAh based on growth condition increase our understanding of how environmental niche partitioning could affect vAh pathogenicity and virulence. Increased secretion of colonization factors and degradative enzymes during biofilm growth and residency may increase bacterial attachment and host invasiveness, while increased secretion of hemolysins, porins, and other potential toxins under planktonic growth (or after host invasion) could result in increased host mortality. The results of this research underscore the need to use culture methods that more closely mimic natural ecological habitat growth to improve our understanding of vAh pathogenesis.


2020 ◽  
Author(s):  
Priscilla C. Barger ◽  
Mark R Liles ◽  
Benjamin H Beck ◽  
Joseph C Newton

Abstract Background: Hypervirulent Aeromonas hydrophila (vAh) is an emerging pathogen in freshwater aquaculture that results in the loss of over 3 million pounds of marketable channel catfish, Ictalurus punctatus, and channel catfish hybrids (I. punctatus, ♀ x blue catfish, I. furcatus, ♂) each year from freshwater catfish production systems in Alabama, U.S.A. vAh isolates are clonal in nature and are genetically unique from, and significantly more virulent than, traditional A. hydrophila isolates from fish. Even with the increased virulence, natural infections cannot be reproduced in aquaria challenges making it difficult to determine modes of infection and the pathophysiology behind the devastating mortalities that are commonly observed. Despite the intimate connection between environmental adaptation and plastic response, the role of environmental adaption on vAh pathogenicity and virulence has not been previously explored. In this study, secreted proteins of vAh cultured as free-living planktonic cells and within a biofilm were compared to elucidate the role of biofilm growth on virulence. Results: Functional proteolytic assays found significantly increased degradative activity in biofilm secretomes; in contrast, planktonic secretomes had significantly increased hemolytic activity, suggesting higher toxigenic potential. Intramuscular injection challenges in a channel catfish model showed that in vitro degradative activity translated into in vivo tissue destruction. Identification of secreted proteins by HPLC-MS/MS revealed the presence of many putative virulence proteins under both growth conditions. Biofilm grown vAh produced higher levels of proteolytic enzymes and adhesins, whereas planktonically grown cells secreted higher levels of toxins, porins, and fimbrial proteins. Conclusions: This study is the first comparison of the secreted proteomes of vAh when grown in two distinct ecological niches. These data on the adaptive physiological response of vAh based on growth condition increase our understanding of how environmental niche partitioning could affect vAh pathogenicity and virulence. Increased secretion of colonization factors and degradative enzymes during biofilm growth and residency may increase bacterial attachment and host invasiveness, while increased secretion of hemolysins, porins, and other potential toxins under planktonic growth (or after host invasion) could result in increased host mortality. The results of this research underscore the need to use culture methods that more closely mimic natural ecological habitat growth to improve our understanding of vAh pathogenesis.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Priscilla C. Barger ◽  
Mark R. Liles ◽  
Benjamin H. Beck ◽  
Joseph C. Newton

Abstract Background Hypervirulent Aeromonas hydrophila (vAh) is an emerging pathogen in freshwater aquaculture that results in the loss of over 3 million pounds of marketable channel catfish, Ictalurus punctatus, and channel catfish hybrids (I. punctatus, ♀ x blue catfish, I. furcatus, ♂) each year from freshwater catfish production systems in Alabama, U.S.A. vAh isolates are clonal in nature and are genetically unique from, and significantly more virulent than, traditional A. hydrophila isolates from fish. Even with the increased virulence, natural infections cannot be reproduced in aquaria challenges making it difficult to determine modes of infection and the pathophysiology behind the devastating mortalities that are commonly observed. Despite the intimate connection between environmental adaptation and plastic response, the role of environmental adaption on vAh pathogenicity and virulence has not been previously explored. In this study, secreted proteins of vAh cultured as free-living planktonic cells and within a biofilm were compared to elucidate the role of biofilm growth on virulence. Results Functional proteolytic assays found significantly increased degradative activity in biofilm secretomes; in contrast, planktonic secretomes had significantly increased hemolytic activity, suggesting higher toxigenic potential. Intramuscular injection challenges in a channel catfish model showed that in vitro degradative activity translated into in vivo tissue destruction. Identification of secreted proteins by HPLC-MS/MS revealed the presence of many putative virulence proteins under both growth conditions. Biofilm grown vAh produced higher levels of proteolytic enzymes and adhesins, whereas planktonically grown cells secreted higher levels of toxins, porins, and fimbrial proteins. Conclusions This study is the first comparison of the secreted proteomes of vAh when grown in two distinct ecological niches. These data on the adaptive physiological response of vAh based on growth condition increase our understanding of how environmental niche partitioning could affect vAh pathogenicity and virulence. Increased secretion of colonization factors and degradative enzymes during biofilm growth and residency may increase bacterial attachment and host invasiveness, while increased secretion of hemolysins, porins, and other potential toxins under planktonic growth (or after host invasion) could result in increased host mortality. The results of this research underscore the need to use culture methods that more closely mimic natural ecological habitat growth to improve our understanding of vAh pathogenesis.


Sign in / Sign up

Export Citation Format

Share Document