scholarly journals Modelling the spin equilibrium of neutron stars in low-mass X-ray binaries without gravitational radiation

2005 ◽  
Vol 361 (4) ◽  
pp. 1153-1164 ◽  
Author(s):  
N. Andersson ◽  
K. Glampedakis ◽  
B. Haskell ◽  
A. L. Watts
2019 ◽  
Vol 23 ◽  
pp. 100
Author(s):  
Ch. C. Moustakidis ◽  
M. C. Papazoglou

The gravitational radiation has been proposed a long time before, as an explana- tion for the observed relatively low spin frequencies of young neutron stars and of accreting neutron stars in low-mass X-ray binaries as well. In the present work we studied the effects of the neutron star equation of state on the r-mode instability window of rotating neutron stars.


Author(s):  
Yunus Emre Bahar ◽  
Manoneeta Chakraborty ◽  
Ersin Göğüş

Abstract We present the results of our extensive binary orbital motion corrected pulsation search for 13 low-mass X-ray binaries. These selected sources exhibit burst oscillations in X-rays with frequencies ranging from 45 to 1 122 Hz and have a binary orbital period varying from 2.1 to 18.9 h. We first determined episodes that contain weak pulsations around the burst oscillation frequency by searching all archival Rossi X-ray Timing Explorer data of these sources. Then, we applied Doppler corrections to these pulsation episodes to discard the smearing effect of the binary orbital motion and searched for recovered pulsations at the second stage. Here we report 75 pulsation episodes that contain weak but coherent pulsations around the burst oscillation frequency. Furthermore, we report eight new episodes that show relatively strong pulsations in the binary orbital motion corrected data.


2004 ◽  
Vol 194 ◽  
pp. 128-129
Author(s):  
Włodek Kluźniak

AbstractNon-linear oscillations in the accretion disk are favored as an explanation of high-frequency QPOs observed in the light curves of low-mass X-ray binaries containing neutron stars, black holes, or white dwarfs.


2015 ◽  
Vol 577 ◽  
pp. A5 ◽  
Author(s):  
A. Turlione ◽  
D. N. Aguilera ◽  
J. A. Pons

2015 ◽  
Vol 24 (09) ◽  
pp. 1541007 ◽  
Author(s):  
B. Haskell

In this paper, I will review the theory behind the gravitational wave (GW) driven r-mode instability in rapidly rotating neutron stars (NSs) and discuss which constraints can be derived from observations of spins and temperatures in low mass X-ray binaries (LMXBs). I will discuss how a standard, 'minimal' NS model is not consistent with the data, and discuss some of the additional physical mechanisms that could reconcile theory with observations. In particular, I will focus on additional forms of damping due to exotic cores and on strong mutual friction due to superfluid vortices cutting through superconducting flux tubes, and examine the repercussions these effects could have on the saturation amplitude of the mode. Finally I will also discuss the possibility that oscillations due to r-modes may have been recently observed in the X-ray light curves of two LMXBs.


2015 ◽  
Vol 455 (1) ◽  
pp. 739-753 ◽  
Author(s):  
E. M. Kantor ◽  
M. E. Gusakov ◽  
A. I. Chugunov
Keyword(s):  
X Ray ◽  
Low Mass ◽  

1987 ◽  
Vol 125 ◽  
pp. 135-148
Author(s):  
N.E. White

This paper reviews accreting neutron stars in X-ray binaries, with particular emphasis on how variations in magnetic field strength may be responsible for explaining the spectral and temporal properties observed from the various systems. This includes a review of X-ray pulsars in both low and high mass systems, and a discussion of the spectral properties of the low mass X-ray binaries.


2013 ◽  
Vol 772 (1) ◽  
pp. 7 ◽  
Author(s):  
Sebastien Guillot ◽  
Mathieu Servillat ◽  
Natalie A. Webb ◽  
Robert E. Rutledge

2019 ◽  
Vol 887 (1) ◽  
pp. 48 ◽  
Author(s):  
Nicolas Baillot d’Etivaux ◽  
Sebastien Guillot ◽  
Jérôme Margueron ◽  
Natalie Webb ◽  
Márcio Catelan ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document