superfluid vortices
Recently Published Documents


TOTAL DOCUMENTS

59
(FIVE YEARS 10)

H-INDEX

16
(FIVE YEARS 2)

2021 ◽  
Vol 2021 (9) ◽  
Author(s):  
Yuki Fujimoto ◽  
Muneto Nitta

Abstract We find a novel confinement mechanism in the two-flavor dense quark matter proposed recently, that consists of the 2SC condensates and the P-wave diquark condensates of d-quarks. This quark matter exhibiting color superconductivity as well as superfluidity is classified into two phases; confined and deconfined phases of vortices. We establish that the criterion of the confinement is color neutrality of Aharonov-Bohm (AB) phases: vortices exhibiting color non-singlet AB phases are confined by the so-called AB defects to form color-singlet bound states. In the deconfined phase, the most stable vortices are non-Abelian Alice strings, which are superfluid vortices with fractional circulation and non-Abelian color magnetic fluxes therein, exhibiting color non-singlet AB phases. On the other hand, in the confined phase, these non-Abelian vortices are confined to either a baryonic or mesonic bound state in which constituent vortices are connected by AB defects. The baryonic bound state consists of three non-Abelian Alice strings with different color magnetic fluxes with the total flux canceled out connected by a domain wall junction, while the mesonic bound state consists of two non-Abelian Alice strings with the same color magnetic fluxes connected by a single domain wall. Interestingly, the latter contains a color magnetic flux in its core, but this can exist because of color neutrality of its AB phase.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Darshil Doshi ◽  
Andrey Gromov

AbstractFracton phases of matter feature local excitations with restricted mobility. Despite the substantial theoretical progress they lack conclusive experimental evidence. We discuss a simple and experimentally available realization of fracton physics. We note that superfluid vortices form a Hamiltonian system that conserves total dipole moment and trace of the quadrupole moment of vorticity; thereby establishing a relation to a traceless scalar charge theory in two spatial dimensions. Next we consider the limit where the number of vortices is large and show that emergent vortex hydrodynamics also conserves these moments. Finally, we show that on curved surfaces, the motion of vortices and that of fractons agree; thereby opening a route to experimental study of the interplay between fracton physics and curved space. Our conclusions also apply to charged particles in a strong magnetic field.


In this paper, we will discuss shortly a nonlinear cosmology model inspired by analogy between cosmology phenomena and low temperature physics, especially superfluid vortices dynamics. We described: (a) a nonlinear cosmology model based on Navier-Stokes turbulence equations, which then they are connected to superfluid turbulence, and (b) the superfluid turbulence can lead to superfluid quantized vortices, which can be viewed as large scale version of Bohr’s quantization rule, and (c) this superfluid quantized vortice interpretation of Bohr’s rule allow us to predict quantization of planetary orbits in solar system including new possible orbits beyond Pluto. This paper is intended as a retrospect of what happened after the publication of earlier papers, and also some related ideas we developed since that time. In the second section we also discuss a recent development in matter-creation hypothesis, by virtue of unmatter concept and its extension. It is our hope that the new proposed view will inspire younger physicists and cosmologists to develop more realistic nonlinear cosmology models. And although some of our predictions since 2004 have come to observed data, we also hope the ideas presented here can be further verified with observation data.


Author(s):  
Ankan Sur ◽  
Brynmor Haskell

Abstract Equilibrium configurations of the internal magnetic field of a pulsar play a key role in modelling astrophysical phenomena from glitches to gravitational wave emission. In this paper, we present a numerical scheme for solving the Grad–Shafranov equation and calculating equilibrium configurations of pulsars, accounting for superconductivity in the core of the neutron star, and for the Hall effect in the crust of the star. Our numerical code uses a finite difference method in which the source term appearing in the Grad–Shafranov equation, which is used to model the magnetic equilibrium is non-linear. We obtain solutions by linearising the source and applying an under-relaxation scheme at each step of computation to improve the solver’s convergence. We have developed our code in both C++ and Python, and our numerical algorithm can further be adapted to solve any non-linear PDEs appearing in other areas of computational astrophysics. We produce mixed toroidal–poloidal field configurations, and extend the portion of parameter space that can be investigated with respect to previous studies. We find that in even in the more extreme cases, the magnetic energy in the toroidal component does not exceed approximately 5% of the total. We also find that if the core of the star is superconducting, the toroidal component is entirely confined to the crust of the star, which has important implications for pulsar glitch models which rely on the presence of a strong toroidal field region in the core of the star, where superfluid vortices pin to superconducting fluxtubes.


2020 ◽  
Vol 499 (1) ◽  
pp. 161-170
Author(s):  
B Haskell ◽  
D Antonopoulou ◽  
C Barenghi

ABSTRACT Pulsar glitches offer an insight into the dynamics of superfluids in the high-density interior of a neutron star. To model these phenomena, however, one needs to have an understanding of the dynamics of a turbulent array of superfluid vortices moving through a pinning lattice. In this paper, we develop a theoretical approach to describe vortex-mediated mutual friction in a pinned, turbulent and rotating superfluid. Our model is then applied to the study of the post-glitch rotational evolution in the Vela pulsar and in PSR J0537-6910. We show that in both cases a turbulent model fits the evolution of the spin frequency derivative better than a laminar one. We also predict that the second derivative of the frequency after a glitch should be correlated with the waiting time since the previous glitch, which we find to be consistent with observational data for these pulsars. The main conclusion of this paper is that in the post-glitch rotational evolution of these two pulsars we are most likely observing the response to the glitch of a pinned turbulent region of the star (possibly the crust) and not the laminar response of a regular straight vortex array.


2020 ◽  
Vol 496 (4) ◽  
pp. 5564-5574 ◽  
Author(s):  
T Celora ◽  
V Khomenko ◽  
M Antonelli ◽  
B Haskell

ABSTRACT Observations of pulsar glitches have the potential to provide constraints on the dynamics of the high density interior of neutron stars. However, to do so, realistic glitch models must be constructed and compared to the data. We take a step towards this goal by testing non-linear models for the mutual friction force, which is responsible for the exchange of angular momentum between the neutron superfluid and the observable normal component in a glitch. In particular, we consider a non-linear dependence of the drag force on the relative velocity between superfluid vortices and the normal component, in which the contributions of both kelvin and phonon excitations are included. This non-linear model produces qualitatively new features, and is able to reproduce the observed bimodal distribution of glitch sizes in the pulsar population. The model also suggests that the differences in size distributions in individual pulsars may be due to the glitches being triggered in regions with different pinning strengths, as stronger pinning leads to higher vortex velocities and a qualitatively different mutual friction coupling with respect to the weak pinning case. Glitches in pulsars that appear to glitch quasi-periodically with similar sizes may thus be due to the same mechanisms as smaller events in pulsars that have no preferred glitch size, but simply originate in stronger pinning regions, possibly in the core of the star.


2020 ◽  
Vol 101 (5) ◽  
Author(s):  
Adam Griffin ◽  
Vishwanath Shukla ◽  
Marc-Etienne Brachet ◽  
Sergey Nazarenko

2020 ◽  
Vol 493 (1) ◽  
pp. L98-L102 ◽  
Author(s):  
Aurélien Sourie ◽  
Nicolas Chamel

ABSTRACT Timing of the Crab and Vela pulsars has recently revealed very peculiar evolutions of their spin frequency during the early stage of a glitch. We show that these differences can be interpreted from the interactions between neutron superfluid vortices and proton fluxoids in the core of these neutron stars. In particular, pinning of individual vortices to fluxoids is found to have a dramatic impact on the mutual friction between the neutron superfluid and the rest of the star. The number of fluxoids attached to vortices turns out to be a key parameter governing the global dynamics of the star. These results may have implications for the interpretation of other astrophysical phenomena such as pulsar-free precession or the r-mode instability.


Author(s):  
E Giliberti ◽  
G Cambiotti ◽  
M Antonelli ◽  
P M Pizzochero

Abstract We introduce a Newtonian model for the deformations of a compressible, auto-gravitating and continuously stratified neutron star. The present framework can be applied to a number of astrophysical scenarios as it allows to account for a great variety of loading forces. In this first analysis, the model is used to study the impact of a frozen adiabatic index in the estimate of rotation-induced deformations: we assume a polytropic equation of state for the matter at equilibrium but, since chemical reactions may be slow, the perturbations with respect to the unstressed configuration are modeled by using a different adiabatic index. We quantify the impact of a departure of the adiabatic index from its equilibrium value on the stressed stellar configuration and we find that a small perturbation can cause large variations both in displacements and strains. As a first practical application, we estimate the strain developed between two large glitches in the Vela pulsar showing that, starting from an initial unstressed configuration, it is not possible to reach the breaking threshold of the crust, namely to trigger a starquake. In this sense, the hypothesis that starquakes could trigger the unpinning of superfluid vortices is challenged and, for the quake to be a possible trigger, the solid crust must never fully relax after a glitch, making the sequence of starquakes in a neutron star an history-dependent process.


Sign in / Sign up

Export Citation Format

Share Document