scholarly journals The effects of spatially distributed ionization sources on the temperature structure of H II regions

2007 ◽  
Vol 379 (3) ◽  
pp. 945-955 ◽  
Author(s):  
B. Ercolano ◽  
N. Bastian ◽  
G. Stasinska
2009 ◽  
Vol 708 (2) ◽  
pp. 1551-1559 ◽  
Author(s):  
Mónica Rodríguez ◽  
Jorge García-Rojas

Author(s):  
Alex J Cameron ◽  
Tiantian Yuan ◽  
Michele Trenti ◽  
David C Nicholls ◽  
Lisa J Kewley

Abstract We investigate how H ii region temperature structure assumptions affect “direct-method” spatially-resolved metallicity observations using multispecies auroral lines in a galaxy from the SAMI Galaxy Survey. SAMI609396B, at redshift z = 0.018, is a low-mass galaxy in a minor merger with intense star formation, analogous to conditions at high redshifts. We use three methods to derive direct metallicities and compare with strong-line diagnostics. The spatial metallicity trends show significant differences among the three direct methods. Our first method is based on the commonly used electron temperature Te([O iii]) from the [O iii]λ4363 auroral line and a traditional Te([O ii]) – Te([O iii]) calibration. The second method applies a recent empirical correction to the O+ abundance from the [O iii]/[O ii] strong-line ratio. The third method infers the Te([O ii]) from the [S ii]λλ4069,76 auroral lines. The first method favours a positive metallicity gradient along SAMI609396B, whereas the second and third methods yield flattened gradients. Strong-line diagnostics produce mostly flat gradients, albeit with unquantified contamination from shocked regions. We conclude that overlooked assumptions about the internal temperature structure of H ii regions in the direct method can lead to large discrepancies in metallicity gradient studies. Our detailed analysis of SAMI609396B underlines that high-accuracy metallicity gradient measurements require a wide array of emission lines and improved spatial resolutions in order to properly constrain excitation sources, physical conditions, and temperature structures of the emitting gas. Integral-field spectroscopic studies with future facilities such as JWST/NIRSpec and ground-based ELTs will be crucial in minimising systematic effects on measured gradients in distant galaxies.


Author(s):  
C. W. Allen ◽  
D. L. Kuruzar

The rare earth/transition element intermetallics R2T17 are essentially topologically close packed phases for which layer structure models have already been presented. Many of these compounds are known to undergo allotropic transformation of the type at elevated temperatures. It is not unexpected that shear transformation mechanisms are involved in view of the layering character of the structures. The transformations are evidently quite sluggish, illustrated in furnace cooled Dy2Co17 by the fact that only rarely has the low temperature rhombohedral form been seen. The more usual structures observed so far in furnace cooled alloys include 4H and 6H in Dy2Co17 (Figs. 1 and 2) . In any event it is quite clear that the general microstructure is very complicated as a consequence of the allotropy, illustrated in Fig. 3. Numerous planar defects in the layer plane orientation are evident as are non-layer plane defects inherited from a high temperature structure.


Author(s):  
Douglas L. Dorset

The quantitative use of electron diffraction intensity data for the determination of crystal structures represents the pioneering achievement in the electron crystallography of organic molecules, an effort largely begun by B. K. Vainshtein and his co-workers. However, despite numerous representative structure analyses yielding results consistent with X-ray determination, this entire effort was viewed with considerable mistrust by many crystallographers. This was no doubt due to the rather high crystallographic R-factors reported for some structures and, more importantly, the failure to convince many skeptics that the measured intensity data were adequate for ab initio structure determinations.We have recently demonstrated the utility of these data sets for structure analyses by direct phase determination based on the probabilistic estimate of three- and four-phase structure invariant sums. Examples include the structure of diketopiperazine using Vainshtein's 3D data, a similar 3D analysis of the room temperature structure of thiourea, and a zonal determination of the urea structure, the latter also based on data collected by the Moscow group.


Sign in / Sign up

Export Citation Format

Share Document