scholarly journals Spatially resolved direct method metallicity in a high-redshift analogue local galaxy: temperature structure impact on metallicity gradients

Author(s):  
Alex J Cameron ◽  
Tiantian Yuan ◽  
Michele Trenti ◽  
David C Nicholls ◽  
Lisa J Kewley

Abstract We investigate how H ii region temperature structure assumptions affect “direct-method” spatially-resolved metallicity observations using multispecies auroral lines in a galaxy from the SAMI Galaxy Survey. SAMI609396B, at redshift z = 0.018, is a low-mass galaxy in a minor merger with intense star formation, analogous to conditions at high redshifts. We use three methods to derive direct metallicities and compare with strong-line diagnostics. The spatial metallicity trends show significant differences among the three direct methods. Our first method is based on the commonly used electron temperature Te([O iii]) from the [O iii]λ4363 auroral line and a traditional Te([O ii]) – Te([O iii]) calibration. The second method applies a recent empirical correction to the O+ abundance from the [O iii]/[O ii] strong-line ratio. The third method infers the Te([O ii]) from the [S ii]λλ4069,76 auroral lines. The first method favours a positive metallicity gradient along SAMI609396B, whereas the second and third methods yield flattened gradients. Strong-line diagnostics produce mostly flat gradients, albeit with unquantified contamination from shocked regions. We conclude that overlooked assumptions about the internal temperature structure of H ii regions in the direct method can lead to large discrepancies in metallicity gradient studies. Our detailed analysis of SAMI609396B underlines that high-accuracy metallicity gradient measurements require a wide array of emission lines and improved spatial resolutions in order to properly constrain excitation sources, physical conditions, and temperature structures of the emitting gas. Integral-field spectroscopic studies with future facilities such as JWST/NIRSpec and ground-based ELTs will be crucial in minimising systematic effects on measured gradients in distant galaxies.

2019 ◽  
Vol 15 (S352) ◽  
pp. 267-267
Author(s):  
Rachel Bezanson

AbstractToday's massive elliptical galaxies are primarily red-and-dead, dispersion supported ellipticals. The physical process(es) driving the shutdown or ‘quenching’ of star formation in these galaxies remains one of the least understood aspects of galaxy formation and evolution. Although today's spiral and elliptical galaxies exhibit a clear bimodality in their structures, kinematics, and stellar populations, it may be that the quenching and structural transformation do no occur simultaneously. In this talk I will present evidence that early quiescent galaxies, observed much closer to their quenching epoch at z ∼ 1, retain significant rotational support (∼ twice as much as local ellipticals). This suggests that the mechanisms responsible for shutting down star formation do not also have to destroy ordered motion in massive galaxies; the increased dispersion support could occur subsequently via hierarchical growth and minor merging. I will discuss this evidence in conjunction with recent ALMA studies of the dramatic range in molecular gas reservoirs of recently quenched high redshift galaxies to constrain quenching models. Finally, I will discuss prospects for extending spatially resolved spectroscopic studies of galaxies immediately following quenching with JWST and eventually 30-m class telescopes.


2020 ◽  
Vol 500 (2) ◽  
pp. 2359-2379 ◽  
Author(s):  
A Zurita ◽  
E Florido ◽  
F Bresolin ◽  
E Pérez-Montero ◽  
I Pérez

ABSTRACT Studies of gas-phase radial metallicity profiles in spirals published in the last decade have diminished the importance of galactic bars as agents that mix and flatten the profiles, contradicting results obtained in the 1990s. We have collected a large sample of 2831 published H ii region emission-line fluxes in 51 nearby galaxies, including objects both with and without the presence of a bar, with the aim of revisiting the issue of whether bars affect the radial metal distribution in spirals. In this first paper of a series of two, we present the galaxy and the H ii region samples. The methodology is homogeneous for the whole data sample and includes the derivation of H ii region chemical abundances, structural parameters of bars and discs, galactocentric distances, and radial abundance profiles. We have obtained O/H and N/O abundance ratios from the Te-based (direct) method for a subsample of 610 regions, and from a variety of strong-line methods for the whole H ii region sample. The strong-line methods have been evaluated in relation to the Te-based one from both a comparison of the derived O/H and N/O abundances for individual H ii regions and a comparison of the abundance gradients derived from both methodologies. The median value and the standard deviation of the gradient distributions depend on the abundance method, and those based on the O3N2 indicator tend to flatten the steepest profiles, reducing the range of observed gradients. A detailed analysis and discussion of the derived O/H and N/O radial abundance gradients and y-intercepts for barred and unbarred galaxies is presented in the companion Paper II. The whole H ii region catalogue including emission-line fluxes, positions, and derived abundances is made publicly available on the CDS VizieR facility, together with the radial abundance gradients for all galaxies.


2020 ◽  
Vol 497 (1) ◽  
pp. 672-686
Author(s):  
K Z Arellano-Córdova ◽  
M Rodríguez

ABSTRACT We use a sample of 154 observations of 124 H ii regions that have measurements of both Te[O iii] and Te[N ii], compiled from the literature, to explore the behaviour of the Te[O iii]–Te[N ii] temperature relation. We confirm that the relation depends on the degree of ionization and present a new set of relations for two different ranges of this parameter. We study the effects introduced by our temperature relations and four other available relations in the calculation of oxygen and nitrogen abundances. We find that our relations improve slightly on the results obtained with the previous ones. We also use a sample of 26 deep, high-resolution spectra to estimate the contribution of blending to the intensity of the temperature-sensitive line [O iii] λ4363, and we derive a relation to correct Te[O iii] for this effect. With our sample of 154 spectra, we analyse the reliability of the R, S, O3N2, N2, ONS, and C strong-line methods by comparing the metallicity obtained with these methods with the one implied by the direct method. We find that the strong-line methods introduce differences that reach ∼0.2 dex or more, and that these differences depend on O/H, N/O, and the degree of ionization.


2020 ◽  
Vol 495 (3) ◽  
pp. 2564-2581 ◽  
Author(s):  
Bethan L James ◽  
Nimisha Kumari ◽  
Andrew Emerick ◽  
Sergey E Koposov ◽  
Kristen B W McQuinn ◽  
...  

ABSTRACT Deciphering the distribution of metals throughout galaxies is fundamental in our understanding of galaxy evolution. Nearby, low-metallicity, star-forming dwarf galaxies, in particular, can offer detailed insight into the metal-dependent processes that may have occurred within galaxies in the early Universe. Here, we present VLT/MUSE observations of one such system, JKB 18, a blue diffuse dwarf galaxy with a metallicity of only 12 + log(O/H)=7.6 ± 0.2 (∼0.08 Z⊙). Using high spatial resolution integral-field spectroscopy of the entire system, we calculate chemical abundances for individual H ii regions using the direct method and derive oxygen abundance maps using strong-line metallicity diagnostics. With large-scale dispersions in O/H, N/H, and N/O of ∼0.5–0.6 dex and regions harbouring chemical abundances outside this 1σ distribution, we deem JKB 18 to be chemically inhomogeneous. We explore this finding in the context of other chemically inhomogeneous dwarf galaxies and conclude that neither the accretion of metal-poor gas, short mixing time-scales or self-enrichment from Wolf–Rayet stars are accountable. Using a galaxy-scale, multiphase, hydrodynamical simulation of a low-mass dwarf galaxy, we find that chemical inhomogeneities of this level may be attributable to the removal of gas via supernovae and the specific timing of the observations with respect to star formation activity. This study not only draws attention to the fact that dwarf galaxies can be chemically inhomogeneous, but also that the methods used in the assessment of this characteristic can be subject to bias.


2019 ◽  
Vol 491 (1) ◽  
pp. 1427-1455 ◽  
Author(s):  
Ryan L Sanders ◽  
Alice E Shapley ◽  
Naveen A Reddy ◽  
Mariska Kriek ◽  
Brian Siana ◽  
...  

ABSTRACT We present detections of [O iii] λ4363 and direct-method metallicities for star-forming galaxies at z = 1.7–3.6. We combine new measurements from the MOSFIRE Deep Evolution Field (MOSDEF) survey with literature sources to construct a sample of 18 galaxies with direct-method metallicities at z > 1, spanning 7.5 < 12+log(O/H) < 8.2 and log(M*/M⊙) = 7–10. We find that strong-line calibrations based on local analogues of high-redshift galaxies reliably reproduce the metallicity of the z > 1 sample on average. We construct the first mass–metallicity relation at z > 1 based purely on direct-method O/H, finding a slope that is consistent with strong-line results. Direct-method O/H evolves by ≲0.1 dex at fixed M* and star formation rate from z ∼ 0 to 2.2. We employ photoionization models to constrain the ionization parameter and ionizing spectrum in the high-redshift sample. Stellar models with supersolar O/Fe and binary evolution of massive stars are required to reproduce the observed strong-line ratios. We find that the z > 1 sample falls on the z ∼ 0 relation between ionization parameter and O/H, suggesting no evolution of this relation from z ∼ 0 to z ∼ 2. These results suggest that the offset of the strong-line ratios of this sample from local excitation sequences is driven primarily by a harder ionizing spectrum at fixed nebular metallicity compared to what is typical at z ∼ 0, naturally explained by supersolar O/Fe at high redshift caused by rapid formation time-scales. Given the extreme nature of our z > 1 sample, the implications for representative z ∼ 2 galaxy samples at ∼1010 M⊙ are unclear, but similarities to z > 6 galaxies suggest that these conclusions can be extended to galaxies in the epoch of reionization.


2014 ◽  
Vol 10 (S313) ◽  
pp. 231-235
Author(s):  
Leah K. Morabito ◽  
Adam Deller ◽  
J. B. R. Oonk ◽  
Huub Röttgering ◽  
George Miley

AbstractThe correlation between radio spectral steepness and redshift has been successfully used to find high redshift (z ⩾ 2) radio galaxies, but the origin of this relation is unknown. The ultra-steep spectra of high-z radio sources make them ideally suited for studies with the Low Band Antenna of the new Low Frequency Array, which covers 10–80 MHz and has baselines up to about 1300 km. As part of an ongoing survey, we use the longest baselines to map the low-frequency (< 70 MHz) spatial distributions along the jets of 5 bright extended steep spectrum high-z radio sources. From this, we will determine whether the spectra change over these spatially resolved sources, thereby constraining particle acceleration processes. We present early results from our low-frequency survey of ultra-steep spectrum radio galaxies. The first low frequency long baseline images of these objects are presented.


2008 ◽  
Vol 8 (18) ◽  
pp. 5603-5614 ◽  
Author(s):  
S. L. Napelenok ◽  
R. W. Pinder ◽  
A. B. Gilliland ◽  
R. V. Martin

Abstract. An inverse modeling method was developed and tested for identifying possible biases in emission inventories using satellite observations. The relationships between emission inputs and modeled ambient concentrations were estimated using sensitivities calculated with the decoupled direct method in three dimensions (DDM-3D) implemented within the framework of the Community Multiscale Air Quality (CMAQ) regional model. As a case study to test the approach, the method was applied to regional ground-level NOx emissions in the southeastern United States as constrained by observations of NO2 column densities derived from the Scanning Imaging Absorption Spectrometer for Atmospheric Chartography (SCIAMACHY) satellite instrument. A controlled "pseudodata" scenario with a known solution was used to establish that the methodology can achieve the correct solution, and the approach was then applied to a summer 2004 period where the satellite data are available. The results indicate that emissions biases differ in urban and rural areas of the southeast. The method suggested slight downward (less than 10%) adjustment to urban emissions, while rural region results were found to be highly sensitive to NOx processes in the upper troposphere. As such, the bias in the rural areas is likely not solely due to biases in the ground-level emissions. It was found that CMAQ was unable to predict the significant level of NO2 in the upper troposphere that was observed during the NASA Intercontinental Chemical Transport Experiment (INTEX) measurement campaign. The best correlation between satellite observations and modeled NO2 column densities, as well as comparison to ground-level observations of NO2, was obtained by performing the inverse while accounting for the significant presence of NO2 in the upper troposphere not captured by the regional model.


Author(s):  
V Macian ◽  
C Guardiola ◽  
B Pla ◽  
A Reig

This paper addresses the optimal control of a long-haul passenger train to deliver minimum-fuel operations. Contrary to the common Pontryagin minimum principle approach in railroad-related literature, this work addresses this optimal control problem with a direct method of optimization, the use of which is still marginal in this field. The implementation of a particular direct method based on the Euler collocation scheme and its transcription into a nonlinear problem are described in detail. In this paper, this optimization technique is benchmarked with well-known optimization methods in the literature, namely dynamic programming and the Pontryagin minimum principle, by simulating a real route. The results showed that the direct methods are on the same level of optimality compared with other algorithms while requiring reduced computational time and memory and being able to handle very complex dynamic systems. The performance of the direct method is also compared to the real trajectory followed by the train operator and exhibits up to 20% of fuel saving in the example route.


Author(s):  
Abraham Loeb ◽  
Steven R. Furlanetto

This chapter investigates a number of specific observational probes of the high-redshift Universe. It examines the Lyman-α‎ line, an extraordinarily rich and useful—albeit complex—probe of both galaxies and the intergalactic medium (IGM). As established in the previous chapter, young star-forming galaxies can produce very bright Lyman-α‎ emissions. Although the radiative transfer of these photons through their host galaxies is typically very complex, a good starting point is a simple model in which a fraction of stellar ionizing photons are absorbed within their source galaxy, forming embedded H II regions. The resulting protons and electrons then recombine, producing Lyman-α‎ photons. Assuming ionization equilibrium, the rate of these recombinations must equal the rate at which ionizing photons are produced.


Sign in / Sign up

Export Citation Format

Share Document