Black shales and carbon isotopes in pelagic sediments from the Tethyan Lower Jurassic

Sedimentology ◽  
1986 ◽  
Vol 33 (1) ◽  
pp. 87-106 ◽  
Author(s):  
HUGH C. JENKYNS ◽  
CHRISTOPHER J. CLAYTON
2006 ◽  
pp. 13-17 ◽  
Author(s):  
Platon Tchoumatchenco ◽  
Dragoman Rabrenovic ◽  
Barbara Radulovic ◽  
Vladan Radulovic

In the region across the Serbian/Bulgarian state border, there are individualized 5 Jurassic paleogeographic units (from West to East): (1) the Thracian Massif Unit without Jurassic sediments; (2) the Luznica-Koniavo Unit - partially with Liassic in Grsten facies and with deep water Middle Callovian-Kimmeridgian (p. p) sediments of the type "ammonitico rosso", and Upper Kimmeridgian-Tithonian siliciclastics flysch; (3) The Getic Unit subdivided into two subunits - the Western Getic Sub-Uni - without Lower Jurassic sediments and the Eastern Getic Sub-Unit with Lower Jurassic continental and marine sediments, which are followed in both sub-units by carbonate platform limestones (type Stramberk); (4) the Infra (Sub)-Getic Unit - with relatively deep water Liassic and Dogger sediments (the Dogger of type "black shales with Bossitra alpine") and Middle Callovian-Tithonian of type "ammonitico rosso"; (5) the Danubian Unit - with shallow water Liassic, Dogger and Malm (Miroc-Vrska Cuka Zone, deep water Dogger and Malm (Donjomilanovacko-Novokoritska Zone).


2006 ◽  
pp. 19-33 ◽  
Author(s):  
Platon Tchoumatchenco ◽  
Dragoman Rabrenovic ◽  
Barbara Radulovic ◽  
Vladan Radulovic

The Infra-Getic Unit is a palaeogeographic unit, predestined by palaeotectonics. From the point of view of geological heritage, it represents a geosites framework. For the purpose of the correlation, the Serbian sections of Lukanja, Bogorodica Monastery, Rosomac and Senokos, as well as the Bulgarian sections of Komshtitsa, Gintsi, and Stanyantsi were used. The Jurassic sediments of the Infra-Getic Unit crop out on the southern slops of the Stara Planina Mountain in east Serbia and west Bulgaria. The Lower Jurassic started with continental and continental-marine sediments (clays and sandstones) (Lukanja clastics and Lukanja coal beds in Serbia and the Tuden Formation in Bulgaria) and continue with Lukanja quartz sandstones (Serbia) and the Kostina Formation (Bulgaria). These sediments are covered by Lukanja brachiopod beds and Lukanja limestones (Serbia) and the Romanov Dol, Ravna and Dolni Loukovit Members of the Ozirovo Formation (Bulgaria) predominantly consist of bioclastic limestones. The sedimentations follow with Lukanja belemnites-gryphaea beds (marls and clayey limestones), which in Bulgaria correspond to the Bukorovtsi Member (also marls and clayey limestones) of the Ozirovo Formation. The Middle Jurassic sedimentation started with black shales with Bossitra alpine. These sediments are individualized in Serbia as Senokos aleurolites and clays and in Bulgaria they are known as the Etropole Formation. In Serbia the section continues with sandstones called Vodenicki sandstones of Bajocian age, known in Bulgaria as the Dobrogled Member of the Polaten Formation. However, in Bulgaria, the age is Upper Bajocian-Lower Bathonian, and it cover the marls of the lower member (Gornobelotintsi Member) of the Bov Formation and is covered by the upper member - alternation of marls and clayey limestones - the Verenitsa Member of the Bov Formation. The Vodenicki sandstones-Dobrogled Member which ended their distribution in the section of Komshtitsa, to the east (in the Gintsi section), they are not represented - build a body of sandstones, a prodelta coming from the west to the east. The Bov Formation corresponds to the Senokos ammonite beds in east Serbia. The upper boundary of the Senokos ammonite beds and of the Bov Formation is sharp. It is covered by grey limestones of the Yavorec Formation in Bulgaria and by the Kamenica limestones in eastern Serbia. They are covered by grey or red nodular/lithoclastic limestones ("ammonitico rosso" type) of the Gintsi Formation in Bulgaria and the Pokrovenik ammonitic (acanthicum) limestones in Serbia. The Jurassic section in the Infra-Getic ended with grey micritic and lithoclastic limestones, which belong to the Rosomac and Rsovci limestones in east Serbia and to the Glozhene Formation in Bulgaria.


1993 ◽  
Vol 130 (2) ◽  
pp. 191-202 ◽  
Author(s):  
E. Azzaro ◽  
A. Bellanca ◽  
R. Neri

AbstractUpper Triassic/Lower Jurassic organic-rich shales and interbedded carbonates (Rhaetian → Sinemurian) are widespread in the subsurface of southeastern Sicily where important oil fields have been found hosted in Triassic reservoirs. Core samples from wells drilled offshore and onshore were studied from petrographie and geochemical viewpoints.In the Hettangian/Sinemurian shale-carbonate sequences, which accumulated in a rapidly subsiding basin, the micritic aragonitic mud is still largely preserved. Mixed-layer I/S has remained randomly interstratified to a depth > 4000 m. Diagenetic carbonates are non-stoichiometric finely crystalline, pore-filling dolomite and/or calcite. The carbonate component exhibits a high Sr content and fair amounts of Fe and Mn. Carbon and oxygen isotopic values suggest a subsurface interstitial formation for the digenetic carbonates in an essentially closed system. Based on all accumulated data it is suggested that anoxic marine waters were retained in the sediment pores for a long time after deposition, thus enhancing the preservation of significant amounts of the original organic matter.In contrast, Rhaetian tidal-flat deposits hosting black shales display a clay component characterized by ordered illite-rich I/S and a carbonate mineralogy dominated by low-Mg calcite in the uppermost beds and by near-stoichiometric dolomite in the lowermost ones. Petrographie, chemical and isotopic data indicate early cementation in an oxidizing phreatic environment and lower down in the sequence pervasive dolomitization in a sabkha-type environment.


2009 ◽  
Vol 80 (2) ◽  
pp. 124-134 ◽  
Author(s):  
Jinxing Dai ◽  
Caineng Zou ◽  
Jian Li ◽  
Yunyan Ni ◽  
Guoyi Hu ◽  
...  

2013 ◽  
Vol 64 (4) ◽  
pp. 255-277 ◽  
Author(s):  
Yavuz Bedı ◽  
Emil Vasilev ◽  
Christo Dabovski ◽  
Alı Ergen ◽  
Cengız Okuyucu ◽  
...  

Abstract The Istranca Crystalline Complex in NW Anatolia and SE Bulgaria includes structural units that differ in lithostratigraphy, metamorphism, age and structural position. They are collectively named as the “Istranca nappes” comprising from bottom to top the Sarpdere, Mahyadağ and Doğanköy Nappes. The Sarpdere Nappe consists of Lower Triassic arkosic metasandstones with slate interlayers, followed by Middle to Upper Triassic carbonates and an alternation of Upper Triassic clastics and carbonates. The Mahyadağ Nappe comprises a low-grade metamorphic Late Paleozoic- Triassic carbonate-siliciclastic sedimentary succession. The Doğanköy Nappe includes Precambrian?-Paleozoic metasediments, intruded by Late Carboniferous-Early Permian calc-alkaline granitoids. Its Triassic cover comprises metaclastics and metacarbonates. The Istranca nappes were juxtaposed at the end of the Triassic and transgressively covered by Lower Jurassic coarse clastics, followed above by Middle to Late Jurassic carbonates, black shales and carbonate-siliciclastic sedimentary succession. The phosphate concretions in black shales yielded radiolarian assemblages indicating Late Bajocian-Early Bathonian, Early Bathonian and Early Kimmeridgian ages. These nappes and their Jurassic cover are unconformably overlain by the Cenomanian-Santonian volcano-sedimentary successions intruded by Santonian-Campanian Dereköy-Demirköy intrusive suite. The preliminary data suggest that the Variscan basements of the Mahyadağ and Sarpdere Nappes were juxtaposed prior to the Triassic and overridden by the Doğanköy Nappe of possible Rhodopean origin from S to N during the Cimmerian compressional events


2013 ◽  
Vol 9 (6) ◽  
pp. 2703-2712 ◽  
Author(s):  
M. Hermoso ◽  
F. Minoletti ◽  
P. Pellenard

Abstract. One of the most elusive aspects of the Toarcian oceanic anoxic event (T-OAE) is the paradox between carbon isotopes that indicate intense global primary productivity and organic carbon burial at a global scale, and the delayed expression of anoxia in Europe. During the earliest Toarcian, no black shales were deposited in the European epicontinental seaways, and most organic carbon enrichment of the sediments postdated the end of the overarching positive trend in the carbon isotopes that characterises the T-OAE. In the present study, we have attempted to establish a sequence stratigraphic framework for Early Toarcian deposits recovered from a core drilled in the Paris Basin using a combination of mineralogical (quartz and clay relative abundance) and geochemical (Si, Zr, Ti and Al) measurements. Combined with the evolution in redox sensitive elements (Fe, V and Mo), the data suggest that expression of anoxia was hampered in European epicontinental seas during most of the T-OAE (defined by the positive carbon isotope trend) due to insufficient water depth that prevented stratification of the water column. Only the first stratigraphic occurrence of black shales in Europe corresponds to the "global" event. This interval is characterised by >10% Total Organic Carbon (TOC) content that contains relatively low concentration of molybdenum compared to subsequent black shale horizons. Additionally, this first black shale occurrence is coeval with the record of the major negative Carbon Isotope Excursion (CIE), likely corresponding to a period of transient greenhouse intensification likely due to massive injection of carbon into the atmosphere–ocean system. As a response to enhanced weathering and riverine run-off, increased fresh water supply to the basin may have promoted the development of full anoxic conditions through haline stratification of the water column. In contrast, post T-OAE black shales during the serpentinum and bifrons Zones were restricted to epicontinental seas (higher Mo to TOC ratios) during a period of relative high sea level, and carbon isotopes returning to pre-T-OAE values. Comparing palaeoredox proxies with the inferred sequence stratigraphy for Sancerre suggests that episodes of short-term organic carbon enrichment were primarily driven by third-order sea level changes. These black shales exhibit remarkably well-expressed higher-frequency cyclicities in the oxygen availability in the water column whose nature has still to be determined through cyclostratigraphic analysis.


Sign in / Sign up

Export Citation Format

Share Document