Identification of differentially expressed genes under drought stress in perennial ryegrass

2010 ◽  
pp. no-no ◽  
Author(s):  
Shuwei Liu ◽  
Yiwei Jiang
Sugar Tech ◽  
2018 ◽  
Vol 20 (6) ◽  
pp. 756-764 ◽  
Author(s):  
Kai-Chao Wu ◽  
Li-Ping Wei ◽  
Cheng-Mei Huang ◽  
Yuan-Wen Wei ◽  
Hui-Qing Cao ◽  
...  

2020 ◽  
Author(s):  
Xiangchi Zhang ◽  
Weidan Lu ◽  
Xiaoli Wang ◽  
Bin Ma ◽  
Kaiyong Fu ◽  
...  

Abstract Phosphorus stress and drought stress are common abiotic stresses. In this study, two winter wheat “Xindong20” and “Xindong23” were solution cultured and then treated with drought stress under conventional phosphorus level (CP: 1.0 mmol/L) and low phosphorus level (LP: 0.05 mmol /L), respectively. The results showed that with the increase of drought stress, the LP application was more conducive to the growth of root tips, length, forks, surfarea and root vitality of wheat. Under the LP treatment, the total phosphorus content of root at rewatered 3d was increased by 94.2% in Xindong20 wheat and decreased by 48.9% in Xindong23 wheat, compared with their respective samples at drought 0d. The LP treatment increased the percentage content of K and decreased the P and Ca percentage content. However, under CP treatment, the percentage content of Zn after rewatered 3 days were increased, compared with drought 7d. Based on the GeneChip analysis of root samples from drought 7d, the microarray results showed that 4577 and 202 differentially expressed genes were detected from Xindong20 and Xindong23, respectively. Among them, 89.9% of differentially expressed genes were involved in organelles and vesicles in Xindong20, and 69.8% were involved in genes encoding root anatomical structure, respiratory chain, electron transport chain, ion transport and enzyme activity in Xindong23. Therefore, the supply of low phosphorus has more effects on the drought tolerance of wheat, and the wheat with different drought tolerance has different regulatory genes. The higher drought-tolerant wheat has more genes up-regulation in response to drought stress.


BMC Genomics ◽  
2022 ◽  
Vol 23 (1) ◽  
Author(s):  
Jessica K. Devitt ◽  
Albert Chung ◽  
John J. Schenk

Abstract Background How do xerophytic species thrive in environments that experience extreme annual drought? Although critical to the survival of many species, the genetic responses to drought stress in many non-model organisms has yet to be explored. We investigated this question in Mentzelia section Bartonia (Loasaceae), which occurs throughout western North America, including arid lands. To better understand the genetic responses to drought stress among species that occur in different habitats, the gene expression levels of three species from Mentzelia were compared across a precipitation gradient. Two de novo reference transcriptomes were generated and annotated. Leaf and root tissues were collected from control and drought shocked plants and compared to one another for differential expression. A target-gene approach was also implemented to better understand how drought-related genes from model and crop species function in non-model systems. Results When comparing the drought-shock treatment plants to their respective control plants, we identified 165 differentially expressed clusters across all three species. Differentially expressed genes including those associated with water movement, photosynthesis, and delayed senescence. The transcriptome profiling approach was coupled with a target genes approach that measured expression of 90 genes associated with drought tolerance in model organisms. Comparing differentially expressed genes with a ≥ 2 log-fold value between species and tissue types showed significant differences in drought response. In pairwise comparisons, species that occurred in drier environments differentially expressed greater genes in leaves when drought shocked than those from wetter environments, but expression in the roots mostly produced opposite results. Conclusions Arid-adapted species mount greater genetic responses compared to the mesophytic species, which has likely evolved in response to consistent annual drought exposure across generations. Drought responses also depended on organ type. Xerophytes, for example, mounted a larger response in leaves to downregulate photosynthesis and senescence, while mobilizing carbon and regulating water in the roots. The complexity of drought responses in Mentzelia suggest that whole organism responses need to be considered when studying drought and, in particular, the physiological mechanisms in which plants regulate water, carbon, cell death, metabolism, and secondary metabolites.


Author(s):  
Gintaras Brazauskas ◽  
Izolda Pašakinskienė

Identification of Differentially Expressed Genes in Axillary Tillers of Perennial Ryegrass A PCR-based suppression subtractive hybridisation (SSH) technique was used to identify differentially expressed genes in the primary and axillary tillers of a perennial ryegrass (Lolium perenne L.) mutant with enhanced axillary tillering. A total of 310 expressed sequence tags (ESTs) were obtained representing 249 non-redundant sequences. The average EST sequence length was 249 nt and varied from 30 to 508 nt. Putative function was assigned to 152 ESTs by comparing sequences with publicly available databases of NCBI. The remaining 97 ESTs had no sequence similarity matches to any of the known databases. Several ESTs were selected as potential candidates for the control of axillary tiller formation. RUB1 conjugating enzyme and BIG protein were shown to play role in auxin response regulation, SHOOT1 protein was associated with fasciation mutation in soybean (Glycine max L.), and brassinosteroid LRR receptor kinase with brassinosteroid signalling.


Sign in / Sign up

Export Citation Format

Share Document