scholarly journals Consequence of herbivory for the fitness cost of herbicide resistance: photosynthetic variation in the context of plant-herbivore interactions

2004 ◽  
Vol 18 (2) ◽  
pp. 447-454 ◽  
Author(s):  
A. J. Gassmann ◽  
D. J. Futuyma
2021 ◽  
Author(s):  
Nia M Johnson ◽  
Regina S Baucom

Natural populations evolve in response to biotic and abiotic changes in their environment, which shape species interactions and ecosystem dynamics. Agricultural systems can introduce novel conditions via herbicide exposure to non-crop habitats in surrounding fields. While herbicide drift is known to produce a variety of toxic effects in plants, little is known about its impact on non-target wildlife species interactions. In a two-year study, we investigated the impact of herbicide drift on plant-herbivore interactions with common weed velvetleaf (Abutlion theophrasti) as the focal species. The findings reveal a significant increase in the phloem feeding silverleaf whitefly (Bermisia tabaci) abundance on the plants exposed to herbicide at drift rates of 0.5% and 1% of the field dose. Additionally, we found evidence that drift imposes correlated selection on whitefly resistance and growth rate as well as positive linear selection on herbicide resistance. We also identified a significant phenotypic tradeoff between whitefly resistance and herbicide resistance in addition to whitefly resistance and relative growth rate in the presence of dicamba drift. These findings suggest herbicide exposure to non-target communities can significantly alter herbivore populations, potentially impacting biodiversity and community dynamics of weed populations found at the agro-ecological interface.


Plants ◽  
2019 ◽  
Vol 8 (11) ◽  
pp. 469 ◽  
Author(s):  
Vila-Aiub

Herbicide resistance is the ultimate evidence of the extraordinary capacity of weeds to evolve under stressful conditions. Despite the extraordinary plant fitness advantage endowed by herbicide resistance mutations in agroecosystems under herbicide selection, resistance mutations are predicted to exhibit an adaptation cost (i.e., fitness cost), relative to the susceptible wild-type, in herbicide untreated conditions. Fitness costs associated with herbicide resistance mutations are not universal and their expression depends on the particular mutation, genetic background, dominance of the fitness cost, and environmental conditions. The detrimental effects of herbicide resistance mutations on plant fitness may arise as a direct impact on fitness-related traits and/or coevolution with changes in other life history traits that ultimately may lead to fitness costs under particular ecological conditions. This brings the idea that a “lower adaptive value” of herbicide resistance mutations represents an opportunity for the design of resistance management practices that could minimize the evolution of herbicide resistance. It is evident that the challenge for weed management practices aiming to control, minimize, or even reverse the frequency of resistance mutations in the agricultural landscape is to “create” those agroecological conditions that could expose, exploit, and exacerbate those life history and/or fitness traits affecting the evolution of herbicide resistance mutations. Ideally, resistance management should implement a wide range of cultural practices leading to environmentally mediated fitness costs associated with herbicide resistance mutations.


2017 ◽  
Vol 106 (1) ◽  
pp. 347-356 ◽  
Author(s):  
Wei Huang ◽  
Elias Zwimpfer ◽  
Maxime R. Hervé ◽  
Zoe Bont ◽  
Matthias Erb

2021 ◽  
Author(s):  
Meret Huber ◽  
Thomas Roder ◽  
Sandra Irmisch ◽  
Alexander Riedel ◽  
Saskia Gablenz ◽  
...  

Gut enzymes can metabolize plant defense metabolites and thereby affect the growth and fitness of insect herbivores. Whether these enzymes also influence herbivore behavior and feeding preference is largely unknown. We studied the metabolization of taraxinic acid β-D-glucopyranosyl ester (TA-G), a sesquiterpene lactone of the common dandelion (Taraxacum officinale) that deters its major root herbivore, the common cockchafer larva (Melolontha melolontha). We demonstrate that TA-G is rapidly deglycosylated and conjugated to glutathione in the insect gut. A broad-spectrum M. melolontha β-glucosidase, Mm_bGlc17, is sufficient and necessary for TA-G deglycosylation. Using plants and insect RNA interference, we show that Mm_bGlc17 reduces TA-G toxicity. Furthermore, Mm_bGlc17 is required for the preference of M. melolontha larvae for TA-G deficient plants. Thus, herbivore metabolism modulates both the toxicity and deterrence of a plant defense metabolite. Our work illustrates the multifacteted roles of insect digestive enzymes as mediators of plant-herbivore interactions.


Author(s):  
Ivan Galis ◽  
Meredith C. Schuman ◽  
Klaus Gase ◽  
Christian Hettenhausen ◽  
Markus Hartl ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document