Role of sexual and natural selection in evolution of body size and shape: a phylogenetic study of morphological radiation in grouse

2006 ◽  
Vol 19 (4) ◽  
pp. 1083-1091 ◽  
Author(s):  
S. V. DROVETSKI ◽  
S. ROHWER ◽  
N. A. MODE
2011 ◽  
Vol 11 (13) ◽  
pp. 1-14 ◽  
Author(s):  
Malva I. M. Hernández ◽  
Leandro R. Monteiro ◽  
Mario E. Favila

Author(s):  
Steven E. Vigdor

Chapter 7 describes the fundamental role of randomness in quantum mechanics, in generating the first biomolecules, and in biological evolution. Experiments testing the Einstein–Podolsky–Rosen paradox have demonstrated, via Bell’s inequalities, that no local hidden variable theory can provide a viable alternative to quantum mechanics, with its fundamental randomness built in. Randomness presumably plays an equally important role in the chemical assembly of a wide array of polymer molecules to be sampled for their ability to store genetic information and self-replicate, fueling the sort of abiogenesis assumed in the RNA world hypothesis of life’s beginnings. Evidence for random mutations in biological evolution, microevolution of both bacteria and antibodies and macroevolution of the species, is briefly reviewed. The importance of natural selection in guiding the adaptation of species to changing environments is emphasized. A speculative role of cosmological natural selection for black-hole fecundity in the evolution of universes is discussed.


2010 ◽  
Vol 23 (10) ◽  
pp. 2163-2175 ◽  
Author(s):  
J. PÉREZ-ALQUICIRA ◽  
F. E. MOLINA-FREANER ◽  
D. PIÑERO ◽  
S. G. WELLER ◽  
E. MARTÍNEZ-MEYER ◽  
...  

2015 ◽  
Vol 25 (10) ◽  
pp. 753-759 ◽  
Author(s):  
Katerina Maximova ◽  
Mohammad K.A. Khan ◽  
S. Bryn Austin ◽  
Sara F.L. Kirk ◽  
Paul J. Veugelers
Keyword(s):  

2002 ◽  
Vol 59 (10) ◽  
pp. 1606-1615 ◽  
Author(s):  
Martin Kainz ◽  
Marc Lucotte ◽  
Christopher C Parrish

Pathways of methyl mercury (MeHg) accumulation in zooplankton include ingestion of organic matter (OM). We analyzed fatty acid (FA) biomarkers in zooplankton to (i) investigate the effect of allochthonous and autochthonous OM ingestion on MeHg concentrations ([MeHg]) in zooplankton and (ii) examine how algal and bacterial food sources affect MeHg bioaccumulation. We partitioned bulk zooplankton samples (i.e., >500, 202, 100, and 53 μm) from Lake Lusignan (Québec) and measured [MeHg] and [FA] in each fraction. [MeHg] increased with increasing body size and was significantly higher in pelagic than in littoral macrozooplankton (>500 μm). The amount of the ingested terrestrial FA biomarker 24:0 indicated that less than 1% of the total FA in zooplankton was derived from allochthonous sources. More than 60% of the ingested FA originated from algal biomarkers and <10% from bacterial biomarkers. Relative amounts of algal-derived essential FA and bacterial FA were not associated with [MeHg] in any size fraction. In pelagic zones, the amount of MeHg in zooplankton related positively to the number of large organisms such as Calanoid copepods and Daphnia. We propose that the accumulation of MeHg in lacustrine zooplankton depends on the zooplankton habitat rather than on the quality of ingested food.


2007 ◽  
Vol 85 (12) ◽  
pp. 1275-1285 ◽  
Author(s):  
Sebastián P. Luque ◽  
Edward H. Miller ◽  
John P.Y. Arnould ◽  
Magaly Chambellant ◽  
Christophe Guinet

Pre- and post-weaning functional demands on body size and shape of mammals are often in conflict, especially in species where weaning involves a change of habitat. Compared with long lactations, brief lactations are expected to be associated with fast rates of development and attainment of adult traits. We describe allometry and growth for several morphological traits in two closely related fur seal species with large differences in lactation duration at a sympatric site. Longitudinal data were collected from Antarctic ( Arctocephalus gazella (Peters, 1875); 120 d lactation) and subantarctic ( Arctocephalus tropicalis (Gray, 1872); 300 d lactation) fur seals. Body mass was similar in neonates of both species, but A. gazella neonates were longer, less voluminous, and had larger foreflippers. The species were similar in rate of preweaning growth in body mass, but growth rates of linear variables were faster for A. gazella pups. Consequently, neonatal differences in body shape increased over lactation, and A. gazella pups approached adult body shape faster than did A. tropicalis pups. Our results indicate that preweaning growth is associated with significant changes in body shape, involving the acquisition of a longer, more slender body with larger foreflippers in A. gazella. These differences suggest that A. gazella pups are physically more mature at approximately 100 d of age (close to weaning age) than A. tropicalis pups of the same age.


Body Image ◽  
2006 ◽  
Vol 3 (2) ◽  
pp. 163-171 ◽  
Author(s):  
Marita P. McCabe ◽  
Lina A. Ricciardelli ◽  
Geeta Sitaram ◽  
Katherine Mikhail

Sign in / Sign up

Export Citation Format

Share Document