Adaptive speciation and sexual dimorphism contribute to diversity in form and function in the adaptive radiation of Lake Matano’s sympatric roundfin sailfin silversides

2011 ◽  
Vol 24 (11) ◽  
pp. 2329-2345 ◽  
Author(s):  
J. PFAENDER ◽  
F. W. MIESEN ◽  
R. K. HADIATY ◽  
F. HERDER

Reproduction and development are large topics, knowledge of which underpins several medical specialities including sexual health, fertility, gynaecology, urology, reproductive endocrinology, obstetrics, and neonatology. Doctors need to know the structure, function, and endocrine control of both male and female systems in order to diagnose and manage conditions specific to either male or female organs, as well as conditions such as impotence and infertility. Not surprisingly, the reproductive system is the only body system that shows major differences in both structure and function between males and females. However, sexual differences go beyond the primary sexual characteristics present at birth and the secondary sexual characteristics that emerge under the influence of sex hormones at puberty. Sexual dimorphism in some brain structures commences at an early age, and differences in the endocrine profiles of males and females produce characteristic changes in morphology, physiology, and behaviour that go beyond simple sexual dimorphism to affect many aspects of life, including sexual differences in susceptibility to disease and the longer life expectancy of women as compared to men that is seen around the world. Whether these differences, mainly beneficial to women, are because females are ‘biologically superior’ or because of a complex mix of genetic, behavioural, and social factors is a matter for discussion and research. Some knowledge of embryology is important to every medical student. As a minimum it provides explanations for the congenital malformations and their consequences that are encountered in many areas of clinical practice. Deeper knowledge will assist those seeking real insights into the structure of the human body. It is the study of embryological development and the knowledge of how each tissue type arises, how one tissue meets another, and how tissues move and change shape during development that explains the relations between tissues and organs in the adult human form. Achieving a full understanding of the dynamics of the formation of the body’s organs and tissues is demanding, but it can replace some of the rote learning of anatomical structures, familiar to many students, with a deeper understanding of form and function.


2013 ◽  
Vol 63 (4) ◽  
pp. 397-405
Author(s):  
Lixia Zhang ◽  
Yunyun Zhao ◽  
Jie Yang ◽  
Xin Lu ◽  
Xiaohong Chen

Sexual dimorphism in limb muscles is widespread among anurans, with males having stronger limbs than females. This phenomenon has been interpreted in the context of intrasexual selection: 1) the robust forelimb muscles in males are associated with amplexus, in which the male tries to grasp the female tightly, and also with rejection of rivals’ attempts at taking over, and 2) massive hindlimb muscles favor the ability to kick away rivals during scramble competition. However, in a few species, fertilization occurs without any form of amplexus and in these species the limb muscle dimorphism is expected to be absent. We tested this prediction inFeirana taihangnicus: a species without amplexus. As expected, we detected non-significant sexual differences in the mass of both forelimb and hindlimb muscles after accounting for body size and age. Our findings represent an interesting example of coevolution of form and function.


Author(s):  
Rolf Mu¨ller ◽  
Jianguo Ma ◽  
Zhen Yan ◽  
Cindy Grimm ◽  
Washington Mio

Biodiversity is a notable outcome of biological evolution. In the process of adaptive radiation, functional principles of sensing in biology have been adapted to suit different tasks and constraints. The biosonar system of bats is an example of such an adaptive radiation in sensing that also offers particularly advantageous conditions for a biodiversity-level analysis of adaptation principles with potential engineering relevance. The beam-forming capabilities of bat biosonar are tied to the geometries of external baffle structures, i.e., the outer ears used for reception and the noseleaves used to shape the emitted biosonar pulses. Since the geometries of these baffles determine their functions, which in turn can also be expressed by a shape (the beampattern), biosonar beamforming can be described by two interrelated shape spaces, one for biological form and the other for biological function. A shape space representation for the outer ears can be obtained by a cylindrical transform of the ear surfaces followed by principal component analysis. The results of this analysis are in a form that is suitable to inform the design of technical baffle shapes. However, additional analysis methods need to be developed for noseleaves, beampatterns, as well as the link between form and function.


Author(s):  
Patricia G. Arscott ◽  
Gil Lee ◽  
Victor A. Bloomfield ◽  
D. Fennell Evans

STM is one of the most promising techniques available for visualizing the fine details of biomolecular structure. It has been used to map the surface topography of inorganic materials in atomic dimensions, and thus has the resolving power not only to determine the conformation of small molecules but to distinguish site-specific features within a molecule. That level of detail is of critical importance in understanding the relationship between form and function in biological systems. The size, shape, and accessibility of molecular structures can be determined much more accurately by STM than by electron microscopy since no staining, shadowing or labeling with heavy metals is required, and there is no exposure to damaging radiation by electrons. Crystallography and most other physical techniques do not give information about individual molecules.We have obtained striking images of DNA and RNA, using calf thymus DNA and two synthetic polynucleotides, poly(dG-me5dC)·poly(dG-me5dC) and poly(rA)·poly(rU).


2011 ◽  
Author(s):  
Scott Fluke ◽  
Russell J. Webster ◽  
Donald A. Saucier

2013 ◽  
Author(s):  
Joshua Wilt ◽  
William Revelle

Sign in / Sign up

Export Citation Format

Share Document