scholarly journals Alternative Hosts for Fusarium spp. Causing Crown and Root Rot of Asparagus in Spain

2011 ◽  
Vol 159 (2) ◽  
pp. 114-116 ◽  
Author(s):  
Leire Molinero-Ruiz ◽  
Encarnación Rubio-Pérez ◽  
Elisa González-Domínguez ◽  
María José Basallote-Ureba
Plant Disease ◽  
2011 ◽  
Vol 95 (8) ◽  
pp. 960-966 ◽  
Author(s):  
Wade H. Elmer ◽  
Joseph J. Pignatello

Pyrolyzed biomass waste, commonly called biochar, has attracted interest as a soil amendment. A commercial prototype biochar produced by fast pyrolysis of hardwood dust was examined in soils to determine if it could reduce the damaging effect of allelopathy on arbuscular mycorrhizal (AM) root colonization and on Fusarium crown and root rot of asparagus. In greenhouse studies, biochar added at 1.5 and 3.0% (wt/wt) to asparagus field soil caused proportional increases in root weights and linear reductions in the percentage of root lesions caused by Fusarium oxysporum f. sp. asparagi and F. proliferatum compared with a control. Concomitant with these effects was a 100% increase in root colonization by AM fungi at the 3.0% rate. Addition of aromatic acids (cinnamic, coumaric, and ferulic) that are known allelopathic agents affecting asparagus reduced AM colonization but the deleterious effects were not observed following the application of biochar at the higher rate. When dried, ground, asparagus root and crown tissues infested with Fusarium spp. were added to soilless potting mix at 0, 1, or 5 g/liter of potting mix and then planted with asparagus, there was a decrease in asparagus root weight and increase in disease at 1 g/liter of potting mix but results were inconsistent at the higher residue rate. However, when biochar was added at 35 g/liter of potting mix (roughly 10%, vol/vol), these adverse effects on root weight and disease were equal to the nontreated controls. A small demonstration was conducted in field microplots. Those plots amended with biochar (3.5% [wt/wt] soil) produced asparagus plants with more AM colonization in the first year of growth but, in the subsequent year, biochar-treated plants were reduced in size, possibly due to greater than average precipitation and the ability of biochar to retain moisture that, in turn, may have created conditions conducive to root rot. These studies provide evidence that biochar may be useful in overcoming the deleterious effects of allelopathic residues in replant soils on asparagus.


2015 ◽  
Vol 13 (4) ◽  
pp. e1009
Author(s):  
Ana I. Borrego-Benjumea ◽  
José M. Melero-Vara ◽  
María J. Basallote-Ureba

<p><em></em><em>Fusarium oxysporum</em> (<em>Fo</em>), <em>F. proliferatum</em> (<em>Fp</em>) and <em>F. solani</em> (<em>Fs</em>) are causal agents associated with roots of asparagus affected by crown and root rot, a disease inflicting serious losses worldwide. The propagule viability of <em>Fusarium</em> spp. was determined on substrate artificially infested with <em>Fo</em>5<em>, Fp</em>3<em> </em>or <em>Fs</em>2 isolates,<em> </em>amended with either poultry manure (PM), its pellet (PPM), or olive residue compost (ORC) and, thereafter, incubated at 30 or 35°C for different periods. Inoculum viability was significantly affected by these organic amendments (OAs) in combination with temperature and incubation period. The greatest reduction in viability of <em>Fo</em>5 and <em>Fs</em>2 occurred with PPM and loss of viability achieved was higher at 35°C than at 30ºC, and longer incubation period (45 days). However, the viability of <em>Fp</em>3 did not decrease greatly in most of the treatments, as compared to the infested and un-amended control, when incubated at 30ºC. After incubation, seedlings of asparagus `Grande´ were transplanted into pots containing substrates infested with the different species of <em>Fusarium</em>. After three months in greenhouse, symptoms severity in roots showed highly significant decreases, but <em>Fp</em>3 caused lower severity than <em>Fo</em>5 and <em>Fs</em>2. Severity reduction was particularly high at 30ºC (by 15 days incubation for <em>Fs</em>2 and by 30-45 days for <em>Fo</em>5), after PPM treatment, as well as PM-2% for <em>Fo</em>5<em> </em>and <em>Fs</em>2 incubated during 30 and 45 days at both temperatures, and with ORC (15-30 days incubation). Moreover, assessment of plants fresh weight showed significantly high increases in <em>Fo</em>5 and <em>Fs2</em>, with some rates of the three OAs tested, depending on incubation period and temperature.<br /><strong></strong></p>


Plant Disease ◽  
2002 ◽  
Vol 86 (12) ◽  
pp. 1318-1324 ◽  
Author(s):  
Wade H. Elmer

Replanted asparagus fields commonly fail to produce a profitable stand due to alleopathic residues left behind from the previous asparagus crop, elevated densities of pathogenic Fusarium spp., and low densities of vesicular arbuscular mycorrhizae (VAM). Formononetin, a plant isoflavone that stimulates VAM spores to germinate, and sodium chloride (NaCl), a disease-suppressing amendment, were evaluated alone and in combination for their effect on reestablishing asparagus at two locations in abandoned asparagus fields. Greenhouse studies also were conducted with naturally and artificially infested soils. Formononetin was applied as a crown soak or soil drench, and NaCl was applied as a granular treatment. Feeder roots from soil cores sampled from field plots and from greenhouse transplants were assayed for colonization by VAM and for lesions caused by Fusarium oxysporum and F. proliferatum. Formononetin increased the number of VAM vesicles in roots from the field and greenhouse studies and reduced the percent root lesions caused by Fusarium spp. when compared with the nontreated controls. NaCl was more effective than formononetin in reducing the percentage of root lesions in both field and greenhouse experiment when compared with untreated plants but had no effect on VAM colonization. However, there was evidence that NaCl negated the effect of formononentin on VAM colonization. The NaCl treatment increased the May 2001 spear number by 15% and marketable spear weight by 23%. At one site, treatment with formononetin increased mean number of stalks per plant by 29% in 2000 and 14% in 2001. Both formononetin and NaCl improve growth and reduce disease of asparagus in replanted asparagus and may be useful in reestablishing asparagus in abandoned asparagus field.


Plant Disease ◽  
2002 ◽  
Vol 86 (5) ◽  
pp. 493-498 ◽  
Author(s):  
T. C. Reid ◽  
M. K. Hausbeck ◽  
K. Kizilkaya

Growth chamber, greenhouse, and field experiments were conducted with fungicides and biological control agents, including nonpathogenic isolates of Fusarium oxysporum, to test their ability to control disease caused by F. oxysporum f. sp. asparagi and F. proliferatum. In greenhouse studies with asparagus seedlings in soil, Trichoderma harzianum strain T-22, benomyl, and fludioxonil treatments increased root weight and decreased root disease compared with the infested control when a low level of F. oxysporum f. sp. asparagi and F. proliferatum was used. The fungicide fludioxonil limited plant death caused by Fusarium spp. at high inoculum levels, whereas T. harzianum strain T-22 was not effective. Nonpathogenic isolates of F. oxysporum were effective in limiting Fusarium disease on asparagus seedlings in culture tubes, although isolates differed in their ability to control disease caused by F. oxysporum f. sp. asparagi and F. proliferatum. In greenhouse studies, no significant differences in plant death were found between asparagus plants growing in media infested with F. oxysporum f. sp. asparagi and F. proliferatum and left untreated, and those treated with nonpathogenic F. oxysporum. The efficacy of fungicides and biological control products to control Fusarium crown and root rot under commercial field conditions could not be evaluated due to low disease pressure.


2019 ◽  
Vol 102 (1) ◽  
pp. 143-154
Author(s):  
Saeedeh Dehghanpour-Farashah ◽  
Parissa Taheri ◽  
Mahrokh Falahati-Rastegar

2019 ◽  
Vol 3 (1) ◽  
pp. 52-60 ◽  
Author(s):  
Mark Winter ◽  
Peter L. Samuels ◽  
Lindsey K. Otto-Hanson ◽  
Ruth Dill-Macky ◽  
Linda L. Kinkel

The predominant causal agents of Fusarium crown and root rot (FCR) of wheat, along with Fusarium pseudograminearum, are F. graminearum and F. culmorum. Members of the Gram-positive bacterial genus Streptomyces have been shown to inhibit isolates of the genus Fusarium, and Fusarium spp. isolates are also able to inhibit Streptomyces isolates in vitro. However, little is known about these complex antagonistic interactions and the potential for inhibitory Streptomyces to reduce FCR of wheat. The aim of this study was to analyze whether inhibitory Streptomyces isolates affect FCR of wheat and reduce root and stem base colonization by Fusarium culmorum. We enriched sterilized potting soil with spore suspensions of two Streptomyces isolates, inoculated the soil with F. culmorum-colonized wheat straw, and planted pre-germinated wheat seedlings. At 4 weeks, F. culmorum-inoculated plants had significant FCR symptoms on roots and showed reduced fresh weight of roots and above-ground plant biomass compared with the non-inoculated controls. Enrichment of soil with an inhibitory Streptomyces isolate reduced F. culmorum DNA in roots and stem bases by 75% compared with inoculation with F. culmorum alone. Interestingly, co-inoculation of F. culmorum with a non-inhibitory Streptomyces isolate led to the highest levels F. culmorum DNA in stem base tissue and greatest Streptomyces densities (CFU per g of soil) in the rhizosphere. In vitro assays revealed that F. culmorum showed a strong inhibitory activity against the pathogen-inhibitory Streptomyces isolate but not against the non-inhibitory isolate. In vitro tests with a larger set of 17 Streptomyces and five Fusarium spp. isolates revealed that there was little variation among Fusarium spp. isolates in capacities to inhibit the collection of Streptomyces isolates. In contrast, the sensitivity to inhibition by pathogenic Fusarium spp. isolates varied widely among Streptomyces isolates. The results of this study suggest the potential of Streptomyces isolates for biocontrol of FCR of wheat, while highlighting the specificity of Streptomyces−Fusarium interactions. Broader understanding of the variation in susceptibility within Fusarium spp. populations to Streptomyces inhibition and vice versa are needed to advance the potential for successful biological control.


2005 ◽  
Vol 95 (8) ◽  
pp. 867-873 ◽  
Author(s):  
Chantal Hamel ◽  
Vladimir Vujanovic ◽  
Aiko Nakano-Hylander ◽  
Richard Jeannotte ◽  
Marc St-Arnaud

The Fusarium spp. causing Fusarium crown and root rot (FCRR) are ubiquitous and abundant in soils, but in contrast, disease expression is localized and sporadic. Previous studies have related FCRR infection to phenolic acids released by asparagus, to the repression of Mn-reducers in soil, and to various soil physicochemical conditions. Fifty commercial asparagus plantations were surveyed using an exploratory approach in order to pinpoint the ecological conditions associated with FCRR development. Twenty-eight variables were used to describe the soil environments of the asparagus crops as well as the influence of crop management practices used locally. The data set was analyzed both as a whole and parsed by main cultivars (Jersey Giant and Guelph Millenium). Both field conditions and percentage of field area affected by FCRR varied widely between asparagus plantations. Planting depth was positively correlated with percentage of field area affected by FCRR and, hence, deep planting may favor FCRR infection. Plantation age was positively correlated with percentage of field area affected by FCRR, while soil available Mn was inversely correlated. Most importantly, soil Mn availability decreased with increasing plantation age, supporting the hypothesis of an asparagusmediated negative impact on Mn-reducing bacteria and of the involvement of reduced Mn availability in FCRR development. Improving the availability of Mn could provide a solution to the problem of FCRR in asparagus plantations.


2014 ◽  
Vol 104 (4) ◽  
pp. 403-415 ◽  
Author(s):  
Ana Borrego-Benjumea ◽  
María J. Basallote-Ureba ◽  
José M. Melero-Vara ◽  
Pervaiz A. Abbasi

Fusarium crown and root rot (FCRR) of asparagus has a complex etiology with several soilborne Fusarium spp. as causal agents. Ninety-three Fusarium isolates, obtained from plant and soil samples collected from commercial asparagus fields in southwestern Ontario with a history of FCRR, were identified as Fusarium oxysporum (65.5%), F. proliferatum (18.3%), F. solani (6.4%), F. acuminatum (6.4%), and F. redolens (3.2%) based on morphological or cultural characteristics and polymerase chain reaction (PCR) analysis with species-specific primers. The intersimple-sequence repeat PCR analysis of the field isolates revealed considerable variability among the isolates belonging to different Fusarium spp. In the in vitro pathogenicity screening tests, 50% of the field isolates were pathogenic to asparagus, and 22% of the isolates caused the most severe symptoms on asparagus. The management of FCRR with soil organic amendments of pelleted poultry manure (PPM), olive residue compost, and fish emulsion was evaluated in a greenhouse using three asparagus cultivars of different susceptibility in soils infested with two of the pathogenic isolates (F. oxysporum Fo-1.5 and F. solani Fs-1.12). Lower FCRR symptom severity and higher plant weights were observed for most treatments on ‘Jersey Giant’ and ‘Grande’ but not on ‘Mary Washington’. On all three cultivars, 1% PPM consistently reduced FCRR severity by 42 to 96% and increased plant weights by 77 to 152% compared with the Fusarium control treatment. Populations of Fusarium and total bacteria were enumerated after 1, 3, 7, and 14 days of soil amendment. In amended soils, the population of Fusarium spp. gradually decreased while the population of total culturable bacteria increased. These results indicate that soil organic amendments, especially PPM, can decrease disease severity and promote plant growth, possibly by decreasing pathogen population and enhancing bacterial activity in the soil.


Sign in / Sign up

Export Citation Format

Share Document