Yield Stability in Faba Bean, Vicia faba L. 1. Variation Among Inbred Lines*

1994 ◽  
Vol 112 (1) ◽  
pp. 24-29 ◽  
Author(s):  
W. Link ◽  
D. Stelling ◽  
E. Ebmeyer
2015 ◽  
Vol 3 (3) ◽  
pp. 258-268 ◽  
Author(s):  
Tamene Temesgen ◽  
Gemechu Keneni ◽  
Tadese Sefera ◽  
Mussa Jarso

1999 ◽  
Vol 183 (1) ◽  
pp. 35-45 ◽  
Author(s):  
T. Amede ◽  
E. V. Kittlitz ◽  
S. Schubert

2009 ◽  
Vol 60 (4) ◽  
pp. 353 ◽  
Author(s):  
R. Díaz-Ruiz ◽  
Z. Satovic ◽  
C. M. Ávila ◽  
C. M. Alfaro ◽  
M. V. Gutierrez ◽  
...  

Ascochyta blight, caused by Ascochyta fabae Speg., is a disease of faba bean (Vicia faba L.) of worldwide distribution. In this study we have conducted an experiment on Ascochyta fabae resistance in 165 recombinant inbred lines (RILs) developed by single-seed descent from the cross between resistant and susceptible lines (Vf6 × Vf136) in which A. fabae resistance QTLs (quantitative trait loci) have been previously reported in the original F2 population. Recombinant inbred lines were inoculated under controlled growth chamber conditions and evaluated for disease severity and infection type index. The linkage map was constructed by MAPMAKER V2.0 and the QTL analysis was carried out using QTL Cartographer. Two hundred and seventy-seven markers (238 RAPDs, 4 isozymes, 5 ESTs, 1 SCAR, 6 SSRs, 2 STSs, and 21 intron-spanning markers) mapped into 21 linkage groups covering 2.856.7 cM, with a mean inter-marker distance of 12.72 cM. Composite interval mapping identified two zones of putative QTL action in the RIL population for DSL (disease severity on leaves) and DSS (disease severity on stems) traits. Putative QTLs (Af1 and Af2) were identified on chromosome 3 and chromosome 2, respectively, and jointly explained 24% of the phenotypic variance of DSL and 16% of DSS. With this study we have (1) confirmed the QTLs for ascochyta blight resistance found in F3 families in the derived RILs (F6), (2) re-estimated their position and genetic effects, and (3) assessed the stability of these QTLs in different genetic backgrounds by comparison of the mapping data with a previous QTL study.


2016 ◽  
Vol 3 (3) ◽  
Author(s):  
Anil Kumar Singh ◽  
Rashmi Yadav ◽  
M.K. Meena ◽  
Y.J. Khan

Faba bean (Vicia faba L.) maintain third place with respect to area and production among legume. Its unique ability to excel under all most all type of climatic conditions, it is one of the best performing crops under changing climate scenario. Its soil fertility augmenting potential and their performance was evaluated for two years with 73 accessions collected from Bihar. This study provides glimpses of scope and magnitude of soil fertility improving potential of faba bean (Vicia faba L.)


Crop Science ◽  
2021 ◽  
Author(s):  
Lynn Abou Khater ◽  
Fouad Maalouf ◽  
Somanagouda B. Patil ◽  
Rind Balech ◽  
Diana Nacouzi ◽  
...  
Keyword(s):  

Plants ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 173
Author(s):  
Abeer F. Desouky ◽  
Ahmed H. Ahmed ◽  
Hartmut Stützel ◽  
Hans-Jörg Jacobsen ◽  
Yi-Chen Pao ◽  
...  

Pathogenesis-related (PR) proteins are known to play relevant roles in plant defense against biotic and abiotic stresses. In the present study, we characterize the response of transgenic faba bean (Vicia faba L.) plants encoding a PR10a gene from potato (Solanum tuberosum L.) to salinity and drought. The transgene was under the mannopine synthetase (pMAS) promoter. PR10a-overexpressing faba bean plants showed better growth than the wild-type plants after 14 days of drought stress and 30 days of salt stress under hydroponic growth conditions. After removing the stress, the PR10a-plants returned to a normal state, while the wild-type plants could not be restored. Most importantly, there was no phenotypic difference between transgenic and non-transgenic faba bean plants under well-watered conditions. Evaluation of physiological parameters during salt stress showed lower Na+-content in the leaves of the transgenic plants, which would reduce the toxic effect. In addition, PR10a-plants were able to maintain vegetative growth and experienced fewer photosystem changes under both stresses and a lower level of osmotic stress injury under salt stress compared to wild-type plants. Taken together, our findings suggest that the PR10a gene from potato plays an important role in abiotic stress tolerance, probably by activation of stress-related physiological processes.


Sign in / Sign up

Export Citation Format

Share Document