Melt-wall rock interaction in the mantle shown by silicate melt inclusions in peridotite xenoliths from the central Pannonian Basin (western Hungary)

Island Arc ◽  
2009 ◽  
Vol 18 (2) ◽  
pp. 375-400 ◽  
Author(s):  
Csaba Szabó ◽  
Károly Hidas ◽  
Enikő Bali ◽  
Zoltán Zajacz ◽  
István Kovács ◽  
...  
2020 ◽  
Author(s):  
Bianca Németh ◽  
Kálmán Török ◽  
Eniko Bali ◽  
Zoltan Zajacz ◽  
Csaba Szabó

2010 ◽  
Vol 274 (1-2) ◽  
pp. 1-18 ◽  
Author(s):  
Károly Hidas ◽  
Tibor Guzmics ◽  
Csaba Szabó ◽  
István Kovács ◽  
Robert J. Bodnar ◽  
...  

2021 ◽  
Vol 72 (3) ◽  
Author(s):  
Blanka Németh ◽  
Kálmán Török ◽  
Enikő Bali ◽  
Zoltán Zajacz ◽  
László Fodor ◽  
...  

Major and trace element composition of silicate melt inclusions (SMI) and their rock-forming minerals were studied in mafic garnet granulite xenoliths from the Bakony–Balaton Highland Volcanic Field (Western-Hungary). Primary SMIs occur in clinopyroxene and plagioclase in the plagioclase-rich domains of mafic garnet granulites and in ilmenite in the vicinity of these domains in the wall rock. Based on major and trace elements, we demonstrated that the SMIs have no connection with the xenolith-hosting alkaline basalt as they have rhyodacitic composition with a distinct REE pattern, negative Sr anomaly, and HFSE depletion. The trace element characteristics suggest that the clinopyroxene hosted SMIs are the closest representation of the original melt percolated in the lower crust. In contrast, the plagioclase and ilmenite hosted SMIs are products of interaction between the silicic melt and the wall rock garnet granulite. A further product of this interaction is the clinopyroxene–ilmenite±plagioclase symplectite. Textural observations and mass ­balance calculations reveal that the reaction between titanite and the silicate melt led to the formation of these assemblages. We propose that a tectonic mélange of metapelites and (MOR-related) metabasalts partially melted at 0.3–0.5 GPa to form a dacitic–rhyodacitic melt leaving behind a garnet-free, plagioclase+clinopyroxene+orthopyroxene+ilmenite residuum. The composition of the SMIs (both major and trace elements) is similar to those from the middle Miocene calc-alkaline magmas, widely known from the northern Pannonian Basin (Börzsöny and Visegrád Mts., Cserhát and Mátra volcanic areas and Central Slovakian VF), but the SMIs are probably the result of a later, local process. The study of these SMIs also highlights how crustal contamination changes magma compositions during asthenospheric Miocene ascent.


2018 ◽  
Vol 483 ◽  
pp. 162-173 ◽  
Author(s):  
Laura Créon ◽  
Gilles Levresse ◽  
Laurent Remusat ◽  
Hélène Bureau ◽  
Gerardo Carrasco-Núñez

Geology ◽  
1991 ◽  
Vol 19 (2) ◽  
pp. 185
Author(s):  
Benjamin C. Schuraytz ◽  
Thomas A. Vogel ◽  
Leland W. Younker ◽  
G. Lang Farmer ◽  
Kathryn J. Tegtmeyer

2011 ◽  
Vol 52 (11) ◽  
pp. 1334-1352 ◽  
Author(s):  
V.V. Sharygin ◽  
K. Kóthay ◽  
Cs. Szabó ◽  
T.Ju. Timina ◽  
K. Török ◽  
...  

Minerals ◽  
2019 ◽  
Vol 9 (7) ◽  
pp. 412 ◽  
Author(s):  
Vladislav Shatsky ◽  
Dmitry Zedgenizov ◽  
Alexey Ragozin ◽  
Viktoriya Kalinina

New findings of silicate-melt inclusions in two alluvial diamonds (from the Kholomolokh placer, northeastern Siberian Platform) are reported. Both diamonds exhibit a high degree of N aggregation state (60–70% B) suggesting their long residence in the mantle. Raman spectral analysis revealed that the composite inclusions consist of clinopyroxene and silicate glass. Hopper crystals of clinopyroxene were observed using scanning electron microscopy and energy-dispersive spectroscopic analyses; these are different in composition from the omphacite inclusions that co-exist in the same diamonds. The glasses in these inclusions contain relatively high SiO2, Al2O3, Na2O and, K2O. These composite inclusions are primary melt that partially crystallised at the cooling stage. Hopper crystals of clinopyroxene imply rapid cooling rates, likely related to the uplift of crystals in the kimberlite melt. The reconstructed composition of such primary melts suggests that they were formed as the product of metasomatised mantle. One of the most likely source of melts/fluids metasomatising the mantle could be a subducted slab.


Sign in / Sign up

Export Citation Format

Share Document