Large-scale folding in the Asemi-gawa region of the Sanbagawa Belt, southwest Japan

Island Arc ◽  
2009 ◽  
Vol 19 (2) ◽  
pp. 357-370 ◽  
Author(s):  
Hiroshi Mori ◽  
Simon Wallis
Keyword(s):  
2007 ◽  
Vol 167 (1-4) ◽  
pp. 160-180 ◽  
Author(s):  
Katsuya Kaneko ◽  
Hiroki Kamata ◽  
Takehiro Koyaguchi ◽  
Masako Yoshikawa ◽  
Kuniyuki Furukawa

Minerals ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1038
Author(s):  
Toru Takeshita

The Sambagawa metamorphic rocks in central Shikoku, southwest Japan consist of an inverted metamorphic sequence from the upper chlorite to oligoclase-biotite zones at the lower structural level (LSL), which is overlain by a normal metamorphic sequence consisting of the albite-biotite and garnet zones at the upper structural level (USL). These sequences form a large-scale recumbent fold called the Besshi nappe. To unravel the mechanism of recrystallization and physical conditions in quartz, and their relation to exhumation tectonics, microstructures of recrystallized quartz grains in quartz schist from the Asemi-Saruta-Dozan River traverse were analyzed. The recrystallized quartz grain size increases with increasing structural level from 40 µm in the upper chlorite zone to 160 µm in the garnet zone of the USL. Further, the mechanism of dynamic recrystallization of quartz changes from subgrain rotation to grain boundary migration with increasing structural level across the uppermost garnet zone of the LSL. From these data, the deformation temperatures in quartz schist are calculated to increase with increasing structural level within the range between 300 and 450 °C using paleopiezometers and experimental flow laws. It could be interpreted that a rapid cooling of the Besshi nappe from above is responsible for the deformation temperatures recorded in quartz schist.


2004 ◽  
Vol 141 (1) ◽  
pp. 1-13 ◽  
Author(s):  
T. IMAOKA ◽  
T. ITAYA

A volcano-plutonic complex in the Susa area, southwest Japan, consists of the Yamashima andesites, the Koyama gabbros and syn-plutonic porphyrite dykes derived from a common basaltic andesite magma. The complex is closely associated with middle Miocene turbidite deposits. The Yamashima andesites are composed mainly of basaltic andesite feeder dykes, massive submarine lavas with hyaloclastites, and their reworked deposits. The lavas and deposits immediately overlie turbidite deposits, indicating submarine volcanic activity. The Koyama gabbros formed hornfels by contact metamorphism of the surrounding turbidites and andesites. Highly purified clinopyroxene and plagioclase mineral separates from the Yamashima andesites were dated by a K–Ar method using an ultra-low blank K analysis procedure. Ages obtained from duplicate analyses are 16.5±1.5, 15.2±1.4, 15.8±1.7, and 16.5±2.0 Ma for clinopyroxene, and 14.2±0.8, 15.2±0.9, and 15.6±0.9 Ma for plagioclase. The clinopyroxene and plagioclase data define a mineral isochron age of 14.7±0.9 (1σ) Ma with an initial 40Ar/36Ar ratio of 297.3±2.4 (1σ), suggesting that clinopyroxene has no excess argon and can be reliably dated by K–Ar. Most of the groundmass ages are considerably younger (12.1–14.6) than the isochron age, perhaps due to argon loss during alteration. The gabbros give ages of 14.2±0.3 and 14.1±0.3 Ma for biotite, and 13.7±0.3 and 13.7±0.7 Ma for green hornblende. The porphyrite dyke yields an age of 12.5±0.3 Ma for the groundmass, and the pelitic hornfels gives a biotite age of 14.8±0.3 Ma. Our new K–Ar ages, together with previous studies, show that a series of geological events took place in the Susa area between 16 and 13 Ma. Conglomerates and sandstones were deposited in the beginning of marine transgression. Subsequent abrupt deepening led to deposition of a thick black shale unit, turbidite deposits and large-scale submarine channel-fill deposits. Coeval igneous activity formed the volcano-plutonic complex. The magmato-tectonic event was synchronous with the opening of the Japan Sea and the associated clockwise rotation of the southwest Japan arc sliver, recording a unique tectonic setting.


1999 ◽  
Vol 173 ◽  
pp. 243-248
Author(s):  
D. Kubáček ◽  
A. Galád ◽  
A. Pravda

AbstractUnusual short-period comet 29P/Schwassmann-Wachmann 1 inspired many observers to explain its unpredictable outbursts. In this paper large scale structures and features from the inner part of the coma in time periods around outbursts are studied. CCD images were taken at Whipple Observatory, Mt. Hopkins, in 1989 and at Astronomical Observatory, Modra, from 1995 to 1998. Photographic plates of the comet were taken at Harvard College Observatory, Oak Ridge, from 1974 to 1982. The latter were digitized at first to apply the same techniques of image processing for optimizing the visibility of features in the coma during outbursts. Outbursts and coma structures show various shapes.


Sign in / Sign up

Export Citation Format

Share Document