Effect of additional food and water on house mice in a semi-arid agricultural environment in Australia

2008 ◽  
Vol 33 (1) ◽  
pp. 99-109 ◽  
Author(s):  
PETER R. BROWN ◽  
ANTHONY D. ARTHUR ◽  
DEAN A. JONES ◽  
MICAH J. DAVIES
2020 ◽  
Vol 10 (7) ◽  
pp. 3477-3490
Author(s):  
Peter R. Brown ◽  
Anthony D. Arthur ◽  
Dean A. Jones ◽  
Micah J. Davies ◽  
David Grice ◽  
...  

2017 ◽  
Vol 100 ◽  
pp. 325-335 ◽  
Author(s):  
Eness P. Mutsvangwa-Sammie ◽  
Emmanuel Manzungu ◽  
Shephard Siziba

1999 ◽  
Vol 39 (8) ◽  
pp. 1035 ◽  
Author(s):  
D. E. Van Cooten ◽  
A. K. Borrell

Summary. Much of south-eastern Indonesia is mountainous and characterised by a semi-arid tropical environment. Soil erosion is a significant environmental problem facing the region, affecting both productivity of the land and water quality. The challenge for the region is to secure year-round food production in such a fragile environment. More than 90% of rain falls in a distinct wet season between November and April. Therefore, cropping in this region is dependent on matching crop growth with water supply. In particular, crop production depends on the efficient use of rainfall during the wet season, including avoidance of waterlogging, and efficient use of stored soil water during the dry season. This paper summarises the results of a series of experiments undertaken in West Timor, Indonesia, between 1993 and 1999 aimed at developing a raised-bed cropping system. The objective of these studies was to better utilise the more fertile alluvial soils that are often susceptible to waterlogging during the wet season, allowing a range of crops to be grown in addition to rice. Raised beds of height 0.2 m and width 1.5 m were constructed either manually or with an 8.5 hp two-wheeled hand tractor. A range of crops including soybeans, sorghum, maize, pigeon pea, yam bean and cassava were successfully grown on raised beds in the wet season in addition to rice, indicating that raised-bed technology overcomes the constraints of waterlogging in the wet season. Soybeans grew particularly well on raised beds, with December-sown crops producing almost twice the yield of January-sown crops (2.6 v. 1.4 t/ha). For rice and soybeans, early sown crops were better able to match growth with water supply, thereby avoiding end-of-season drought. Early sowing and harvesting of wet season crops enables a drought-resistant crop such as sorghum to be planted in lateMarch or early April, utilising the stored soil moisture for grain production and also maintaining ground cover in the dry season. It is argued that cropping systems based on permanent raised beds can reduce erosion in 2 ways. First, raised beds are a permanent structure and, with the inter-cropping and relay-cropping proposed, crops can provide all-year ground cover in lowland areas. Second, if sufficient food and cash crops are grown on raised beds to meet the basic needs of subsistence farmers, then upland cropping on steep slopes can be replaced by a variety of tree species, providing additional food, fodder, firewood and medicines. Together, these strategies have the capacity to enhance food production and security in the semi-arid areas of eastern Indonesia.


2020 ◽  
Author(s):  
Arindam Malakar ◽  
Michael Kaiser ◽  
Daniel D. Snow ◽  
Harkamal Walia ◽  
Chittaranjan Ray

Author(s):  
I.G.C. Kerr ◽  
J.M. Williams ◽  
W.D. Ross ◽  
J.M. Pollard

The European rabbit (Oryctolagus cuniculus) introduced into New Zealand in the 183Os, has consistently flourished in Central Otago, the upper Waitaki, and inland Marlborough, all areas of mediterranean climate. It has proved difficult to manage in these habitats. The 'rabbit problem' is largely confined to 105,000 ha of low producing land mostly in semi arid areas of Central Otago. No field scale modifications of the natural habitat have been successful in limiting rabbit numbers. The costs of control exceed the revenue from the land and continued public funding for control operations appears necessary. A system for classifying land according to the degree of rabbit proneness is described. Soil survey and land classification information for Central Otago is related to the distribution and density of rabbits. This intormation can be used as a basis for defining rabbit carrying capacity and consequent land use constraints and management needs. It is concluded that the natural rabbit carrying capacity of land can be defined by reference to soil survey information and cultural modification to the natural vegetation. Classification of land according to rabbit proneness is proposed as a means of identifying the need for, and allocation of, public funding tor rabbit management. Keywords: Rabbit habitat, rabbit proneness, use of rabbit prone land.


2007 ◽  
Vol 23 (5) ◽  
pp. 546-555 ◽  
Author(s):  
R. Burgos ◽  
L.J. Odens ◽  
R.J. Collier ◽  
L.H. Baumgard ◽  
M.J. VanBaale

Sign in / Sign up

Export Citation Format

Share Document