A weight function-critical plane approach for low-cycle fatigue under variable amplitude multiaxial loading

Author(s):  
X. CHEN ◽  
D. JIN ◽  
K. S. KIM
2018 ◽  
Vol 53 (4) ◽  
pp. 197-209 ◽  
Author(s):  
Xiao-Wei Wang ◽  
De-Guang Shang ◽  
Yu-Juan Sun

A weight function method based on strain parameters is proposed to determine the critical plane in low-cycle fatigue region under both constant and variable amplitude tension–torsion loadings. The critical plane is defined by the weighted mean maximum absolute shear strain plane. Combined with the critical plane determined by the proposed method, strain-based fatigue life prediction models and Wang-Brown’s multiaxial cycle counting method are employed to predict the fatigue life. The experimental critical plane orientation and fatigue life data under constant and variable amplitude tension–torsion loadings are used to verify the proposed method. The results show that the proposed method is appropriate to determine the critical plane under both constant and variable amplitude loadings.


2011 ◽  
Vol 130-134 ◽  
pp. 2330-2334
Author(s):  
Jun Hong Zhang ◽  
Feng Lv ◽  
Wen Peng Ma

Multi-axial low cycle fatigue was the main failure mode of turbine disk. Critical plane approach was an idea method for the prediction of multi-axial fatigue life. A lot of models based on critical plane approach have been put forward, but there is not a universal prediction model. In order to find a model for turbine disk, linear heteroscedastic regression analysis of the standard low cycle fatigue data was carried out to obtained fatigue parameters. After verifying the accuracy of the finite element model, the stress and strain history of the danger point was obtained based on elastic-plastic finite element analysis. The critical plane and the damage of it was found by the method of coordinate transformation. The fatigue life of turbine disk was estimated by different models, and the results were quite different. SWT-Bannantine model was more suitable for the turbine disk.


2008 ◽  
Vol 385-387 ◽  
pp. 209-212
Author(s):  
Dan Jin ◽  
Jian Hua Wu ◽  
Yang Zhang

A series of low-cycle fatigue experiments of axial-torsional loading of variable amplitudes were performed on the tubular specimens of 304 stainless steel. Two models of multiaxial low-cycle fatigue life, KBM and FS method, are evaluated based on the fatigue life data of 304 stainless steel. Rainflow cycle counting and the Liner Damage Rule are used to calculate fatigue damage. It was shown that the part prediction results are nonconservative for the two models. The life prediction is done again based on the weight function critical plane method for the two models. The prediction results are better by using the weight function critical plane method than the previous results for KBM model. But the prediction results are improved little for FS model in spite of the weight function critical plane method being used.


2018 ◽  
Vol 763 ◽  
pp. 867-874
Author(s):  
Yu Shu Liu ◽  
Ke Peng Chen ◽  
Guo Qiang Li ◽  
Fei Fei Sun

Buckling Restrained Braces (BRBs) are effective energy dissipation devices. The key advantages of BRB are its comparable tensile and compressive behavior and stable energy dissipation capacity. In this paper, low-cycle fatigue performance of domestic BRBs is obtained based on collected experimental data under constant and variable amplitude loadings. The results show that the relationship between fatigue life and strain amplitude satisfies the Mason-Coffin equation. By adopting theory of structural reliability, this paper presents several allowable fatigue life curves with different confidential levels. Besides, Palmgren-Miner method was used for calculating BRB cumulative damages. An allowable damage factor with 95% confidential level is put forward for assessing damage under variable amplitude fatigue. In addition, this paper presents an empirical criterion with rain flow algorithm, which may be used to predict the fracture of BRBs under severe earthquakes and provide theory and method for their engineering application. Finally, the conclusions of the paper were vilified through precise yet conservative prediction of the fatigue failure of BRB.


2014 ◽  
Vol 627 ◽  
pp. 425-428
Author(s):  
Dan Jin ◽  
Da Jiang Tian ◽  
Qi Zhou Wu ◽  
Wei Lin

A series of tests for low cycle fatigue were conducted on the tubular specimens for 304 stainless steel under variable amplitude and irregular axial-torsional loading. Rainflow cycle counting and linear damage rule are used to calculate fatigue damage and four approaches, e.g. SWT(Smith-Watson-Topper), KBM(Kandil-Brown-Miller), FS(Fatemi-Socie), and LKN(Lee-Kim-Nam) approach are employed to predict the fatigue life. The maximum shear strain plane, the maximum normal strain plane, and the maximum damage plane are considered as the critical plane, respectively. The effects of the choice of the critical plane on previous approaches are discussed. It is shown that comparing with the maximum shear/normal strain approach, the predictions are improved by using the maximum damage plane approach, part nonproportional paths for SWT, AV and part nonproportional paths for KBM, TV paths for FS. But for LKN, the prediction results are nonconservative for some paths than that of the maximum shear/normal strain approach.


Sign in / Sign up

Export Citation Format

Share Document