The effect of laser power density on the fatigue life of laser-shock-peened 7050 aluminium alloy

2007 ◽  
Vol 30 (11) ◽  
pp. 1110-1124 ◽  
Author(s):  
Q. LIU ◽  
C. H. YANG ◽  
K. DING ◽  
S. A. BARTER ◽  
L. YE
Materials ◽  
2020 ◽  
Vol 13 (21) ◽  
pp. 4711
Author(s):  
Xufeng Yang ◽  
Hongjian Zhang ◽  
Haitao Cui ◽  
Changlong Wen

The purpose of this paper is to investigate the performance of laser shock peening (LSP) subjected to fretting fatigue with TC11 titanium alloy specimens and pads. Three laser power densities (3.2 GW/cm2, 4.8 GW/cm2 and 6.4 GW/cm2) of LSP were chosen and tested using manufactured fretting fatigue apparatus. The experimental results show that the LSP surface treatment significantly improves the fretting fatigue lives of the fretting specimens, and the fretting fatigue life increases most when the laser power density is 4.8 GW/cm2. It is also found that with the increase of the laser power density, the fatigue crack initiation location tends to move from the surface to the interior of the specimen.


2018 ◽  
Vol 105 ◽  
pp. 35-42 ◽  
Author(s):  
Chao Zheng ◽  
Xiu Zhang ◽  
Yiliang Zhang ◽  
Zhong Ji ◽  
Yiguo Luan ◽  
...  

2019 ◽  
Vol 114 ◽  
pp. 127-134 ◽  
Author(s):  
Yinfang Jiang ◽  
Xin Li ◽  
Wenfan Jiang ◽  
Quanhong Wan ◽  
Xuedong Gan ◽  
...  

2012 ◽  
Vol 452-453 ◽  
pp. 741-745
Author(s):  
Hong Yan Ruan ◽  
Xiao Jiang Xie ◽  
Shu Huang ◽  
Jian Zhong Zhou

The ABAQUS software was used to analyze the residual stress of TiN film treated by the single point micro-scale laser shock peening (μLSP). In view of the multi-factor effect of μLSP, the response surface methodology (RSM) of Design-Expert software was utilized to analyze the influence of laser process parameters on the residual stress in TiN film, based on the Box-Behnken experimental design methods, as a result, optimal combination of the laser process parameters was obtained. The results showed that μLSP can transform the tensile residual stress in the TiN film into the compressive residual stress, the compressive residual stress was gradually increasing with the increased laser power density, when the laser power density was 8 GW/cm2, the maximum compressive residual stress of the film surface was up to -350.48 MPa. In addition, as the laser power density increased, the maximum compressive residual stress was moving away from the spot center. The optimal combination of the laser process parameters of μLSP was obtained by the RSM, the laser power density was 7.6 GW/cm2, laser spot diameter was 283 μm, and the number of shocking was 2 times. Simulation results of the average residual stress was -248.76 MPa, while the predicting result of regression model was -245.31 MPa, the error was just 1.38 %. The results showed that μLSP was feasible for improving the residual stress distribution of TiN film, and the RSM can effectively optimize the process parameters of μLSP.


1973 ◽  
Vol 28 (2) ◽  
pp. 273-279
Author(s):  
J. Kühl ◽  
S. Neumann ◽  
M. Kriese

Using a simple rate equation model, the laser power density Ic necessary to reach 50% of the saturation limited population of the excited atomic level under typical flame conditions is calculated. For Na atoms aspirated into the flame a saturating power density for irradiation with a narrow dye laser line (bandwidth 0.033 Å) of Ic ~ 0.4 kW/cm2 was determined. With the aid of a dye laser with an appropriate laser power density, analytical curves for Na were measured yielding a detection limit of 0.2 ng/ml. This sensitivity is comparable with the best results obtained by atomic emission flame spectrometry.


2010 ◽  
Vol 43 ◽  
pp. 651-656
Author(s):  
Ai Xin Feng ◽  
Yu Peng Cao ◽  
Chuan Chao Xu ◽  
Huai Yang Sun ◽  
Gui Fen Ni ◽  
...  

In the experiment, we use pulsed laser to conduct discrete scratching on Ni-containing stainless steel protective coatings to test residual stress situation after the matrix is scratched; then to analyze the the impact of the impact stress wave on coating - substrate bonding strength according to the test results, finally to infer the laser power density range within which it occurs coating failure. The study shows that: after laser discrete scratching, the residual stress of the center of the laser-loaded point on matrix surface gradually reduces when the pulsed laser power density increases. The matrix produces a corresponding residual compressive stress under the laser power density reaches a certain value. The actual failure threshold values are 12.006 GW/cm2, 11.829GW/cm2 and 12.193GW/cm2 measured by the three-dimensional topography instrument testing the discrete scratch point of three groups of samples and verified by using a microscope


2013 ◽  
Vol 50 (2) ◽  
pp. 022201
Author(s):  
王振宝 Wang Zhenbao ◽  
冯国斌 Feng Guobin ◽  
杨鹏翎 Yang Pengling ◽  
冯刚 Feng Gang ◽  
闫燕 Yan Yan

2019 ◽  
Vol 9 (17) ◽  
pp. 3511 ◽  
Author(s):  
Kangmei Li ◽  
Yifei Wang ◽  
Yu Cai ◽  
Jun Hu

Laser peen texturing (LPT) is a novelty way of surface texturing based on laser shock processing. One of the most important benefits of LPT is that it can not only fabricate surface textures but also induce residual compressive stress for the target material. However, the residual stress loss leads to partial loss of residual compressive stress and even causes residual tensile stress at the laser spot center. This phenomenon is not conducive to improving the mechanical properties of materials. In this study, a numerical simulation model of LPT was developed and validated by comparison of surface deformation with experiments. In order to investigate the phenomenon of residual stress loss quantitatively, an evaluation method of residual stress field was proposed. The effects of laser power density and laser spot radius on the residual stress, especially the residual stress loss, were systematically investigated. It is found that with the increase of laser power density or laser spot radius, the thickness of residual compressive layer in depth direction becomes larger. However, both the magnitude and the affecting zone size of residual stress loss will be increased, which implies a more severe residual stress loss phenomenon.


Sign in / Sign up

Export Citation Format

Share Document