Selective loss of dopaminergic neurons and formation of Lewy body-like aggregations in α-synuclein transgenic fly neuronal cultures

2006 ◽  
Vol 23 (11) ◽  
pp. 2908-2914 ◽  
Author(s):  
Soon S. Park ◽  
Daewoo Lee
2007 ◽  
Vol 27 (5) ◽  
pp. 981-992 ◽  
Author(s):  
T.-K. Sang ◽  
H.-Y. Chang ◽  
G. M. Lawless ◽  
A. Ratnaparkhi ◽  
L. Mee ◽  
...  

2016 ◽  
Vol 113 (32) ◽  
pp. E4688-E4697 ◽  
Author(s):  
Zoi Alexopoulou ◽  
Johannes Lang ◽  
Rebecca M. Perrett ◽  
Myriam Elschami ◽  
Madeleine E. D. Hurry ◽  
...  

In Parkinson’s disease, misfolded α-synuclein accumulates, often in a ubiquitinated form, in neuronal inclusions termed Lewy bodies. An important outstanding question is whether ubiquitination in Lewy bodies is directly relevant to α-synuclein trafficking or turnover and Parkinson’s pathogenesis. By comparative analysis in human postmortem brains, we found that ubiquitin immunoreactivity in Lewy bodies is largely due to K63-linked ubiquitin chains and markedly reduced in the substantia nigra compared with the neocortex. The ubiquitin staining in cells with Lewy bodies inversely correlated with the content and pathological localization of the deubiquitinase Usp8. Usp8 interacted and partly colocalized with α-synuclein in endosomal membranes and, both in cells and after purification, it deubiquitinated K63-linked chains on α-synuclein. Knockdown of Usp8 in the Drosophila eye reduced α-synuclein levels and α-synuclein–induced eye toxicity. Accordingly, in human cells, Usp8 knockdown increased the lysosomal degradation of α-synuclein. In the dopaminergic neurons of the Drosophila model, unlike knockdown of other deubiquitinases, Usp8 protected from α-synuclein–induced locomotor deficits and cell loss. These findings strongly suggest that removal of K63-linked ubiquitin chains on α-synuclein by Usp8 is a critical mechanism that reduces its lysosomal degradation in dopaminergic neurons and may contribute to α-synuclein accumulation in Lewy body disease.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Ryo Kikuoka ◽  
Ikuko Miyazaki ◽  
Natsuki Kubota ◽  
Megumi Maeda ◽  
Daiki Kagawa ◽  
...  

AbstractMirtazapine, a noradrenergic and specific serotonergic antidepressant (NaSSA), is known to activate serotonin (5-HT) 1A receptor. Our recent study demonstrated that stimulation of astrocytic 5-HT1A receptors promoted astrocyte proliferation and upregulated antioxidative property in astrocytes to protect dopaminergic neurons against oxidative stress. Here, we evaluated the neuroprotective effects of mirtazapine against dopaminergic neurodegeneration in models of Parkinson’s disease (PD). Mirtazapine administration attenuated the loss of dopaminergic neurons in the substantia nigra and increased the expression of the antioxidative molecule metallothionein (MT) in the striatal astrocytes of 6-hydroxydopamine (6-OHDA)-injected parkinsonian mice via 5-HT1A receptors. Mirtazapine protected dopaminergic neurons against 6-OHDA-induced neurotoxicity in mesencephalic neuron and striatal astrocyte cocultures, but not in enriched neuronal cultures. Mirtazapine-treated neuron-conditioned medium (Mir-NCM) induced astrocyte proliferation and upregulated MT expression via 5-HT1A receptors on astrocytes. Furthermore, treatment with medium from Mir-NCM-treated astrocytes protected dopaminergic neurons against 6-OHDA neurotoxicity, and these effects were attenuated by treatment with a MT-1/2-specific antibody or 5-HT1A antagonist. Our study suggests that mirtazapine could be an effective disease-modifying drug for PD and highlights that astrocytic 5-HT1A receptors may be a novel target for the treatment of PD.


2018 ◽  
Vol 4 ◽  
pp. e25423
Author(s):  
Cheng Lin

Grafting of cells in Parkinson's disease (PD) results in a prion-like infection, exhibiting a Lewy body-like pathology, caused by the recipient cells. The transmission mechanism of Lewy bodies is not completely understood. Therefore, a research idea with a novel experimental strategy is proposed to investigate the transmission mechanism of α-synuclein pathology using PD patient-derived human induced pluripotent stem cells (hiPSC) in an in vitro human cellular and molecular PD model and in vivo mouse PD model for dopaminergic neuron transplantation.


2019 ◽  
Vol 5 (1) ◽  
Author(s):  
Collin M. Bantle ◽  
Aaron T. Phillips ◽  
Richard J. Smeyne ◽  
Savannah M. Rocha ◽  
Ken E. Olson ◽  
...  

Abstract Neuroinvasive infections with mosquito-borne alphaviruses such as Western equine encephalitis virus (WEEV) can cause post-encephalitic parkinsonism. To understand the mechanisms underlying these neurological effects, we examined the capacity of WEEV to induce progressive neurodegeneration in outbred CD-1 mice following non-lethal encephalitic infection. Animals were experientally infected with recombinant WEEV expressing firefly luciferase or dsRed (RFP) reporters and the extent of viral replication was controlled using passive immunotherapy. WEEV spread along the neuronal axis from the olfactory bulb to the entorhinal cortex, hippocampus and basal midbrain by 4 days post infection (DPI). Infection caused activation of microglia and astrocytes, selective loss of dopaminergic neurons in the substantia nigra pars compacta (SNpc) and neurobehavioral abnormalities. After 8 weeks, surviving mice displayed continued loss of dopamine neurons in the SNpc, lingering glial cell activation and gene expression profiles consistent with a neurodegenerative phenotype. Strikingly, prominent proteinase K-resistant protein aggregates were present in the the entorhinal cortex, hippocampus and basal midbrain that stained positively for phospho-serine129 α-synuclein (SNCA). These results indicate that WEEV may cause lasting neurological deficits through a severe neuroinflammatory response promoting both neuronal injury and protein aggregation in surviving individuals.


Sign in / Sign up

Export Citation Format

Share Document