scholarly journals Heat‐labile enterotoxin‐induced activation of NF‐κB and MAPK pathways in intestinal epithelial cells impacts enterotoxigenicEscherichia coli(ETEC) adherence

2012 ◽  
Vol 14 (8) ◽  
pp. 1231-1241 ◽  
Author(s):  
Xiaogang Wang ◽  
Xiaofei Gao ◽  
Philip R. Hardwidge
2014 ◽  
Vol 82 (12) ◽  
pp. 5308-5316 ◽  
Author(s):  
Lisa T. Read ◽  
Rachel W. Hahn ◽  
Carli C. Thompson ◽  
David L. Bauer ◽  
Elizabeth B. Norton ◽  
...  

ABSTRACTEnterotoxigenicEscherichia coli(ETEC) is a significant cause of diarrheal disease and death, especially in children in developing countries. ETEC causes disease by colonizing the small intestine and producing heat-labile toxin (LT), heat-stable toxin (ST), or both LT and ST (LT+ST). The majority of ETEC strains produce both ST and LT. Despite the prevalence of LT+ST-producing organisms, few studies have examined the physiologic or immunologic consequences of simultaneous exposure to these two potent enterotoxins. In the current report, we demonstrate that when LT and ST are both present, they increase water movement into the intestinal lumen over and above the levels observed with either toxin alone. As expected, cultured intestinal epithelial cells increased their expression of intracellular cyclic GMP (cGMP) when treated with ST and their expression of intracellular cyclic AMP (cAMP) when treated with LT. When both toxins were present, cGMP levels but not cAMP levels were synergistically elevated compared with the levels of expression caused by the corresponding single-toxin treatment. Our data also demonstrate that the levels of inflammatory cytokines produced by intestinal epithelial cells in response to LT are significantly reduced in animals exposed to both enterotoxins. These findings suggest that there may be complex differences between the epithelial cell intoxication and, potentially, secretory outcomes induced by ETEC strains expressing LT+ST compared with strains that express LT or ST only. Our results also reveal a novel mechanism wherein ST production may reduce the hosts' ability to mount an effective innate or adaptive immune response to infecting organisms.


2009 ◽  
Vol 136 (5) ◽  
pp. A-709-A-710
Author(s):  
Md Ruhul Amin ◽  
Ahmad Othman ◽  
Anas Alakkam ◽  
Krishnamurthy Ramaswamy ◽  
Jaleh Malakooti

Author(s):  
Julian P. Heath ◽  
Buford L. Nichols ◽  
László G. Kömüves

The newborn pig intestine is adapted for the rapid and efficient absorption of nutrients from colostrum. In enterocytes, colostral proteins are taken up into an apical endocytotic complex of channels that transports them to target organelles or to the basal surface for release into the circulation. The apical endocytotic complex of tubules and vesicles clearly is a major intersection in the routes taken by vesicles trafficking to and from the Golgi, lysosomes, and the apical and basolateral cell surfaces.Jejunal tissues were taken from piglets suckled for up to 6 hours and prepared for electron microscopy and immunocytochemistry as previously described.


2001 ◽  
Vol 120 (5) ◽  
pp. A504-A504
Author(s):  
A NEUMANN ◽  
M DEPKAPRONDZINSKI ◽  
C WILHELM ◽  
K FELGENHAUER ◽  
T CASPRITZ ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document