A comparison of gradient ascent, gradient descent and genetic-algorithm-based artificial neural networks for the binary classification problem

2007 ◽  
Vol 24 (2) ◽  
pp. 65-86 ◽  
Author(s):  
Parag C. Pendharkar
2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Ximing Li ◽  
Luna Rizik ◽  
Valeriia Kravchik ◽  
Maria Khoury ◽  
Netanel Korin ◽  
...  

AbstractComplex biological systems in nature comprise cells that act collectively to solve sophisticated tasks. Synthetic biological systems, in contrast, are designed for specific tasks, following computational principles including logic gates and analog design. Yet such approaches cannot be easily adapted for multiple tasks in biological contexts. Alternatively, artificial neural networks, comprised of flexible interactions for computation, support adaptive designs and are adopted for diverse applications. Here, motivated by the structural similarity between artificial neural networks and cellular networks, we implement neural-like computing in bacteria consortia for recognizing patterns. Specifically, receiver bacteria collectively interact with sender bacteria for decision-making through quorum sensing. Input patterns formed by chemical inducers activate senders to produce signaling molecules at varying levels. These levels, which act as weights, are programmed by tuning the sender promoter strength Furthermore, a gradient descent based algorithm that enables weights optimization was developed. Weights were experimentally examined for recognizing 3 × 3-bit pattern.


Author(s):  
А.В. Милов

В статье представлены математические модели на основе искусственных нейронных сетей, используемые для управления индукционной пайкой. Обучение искусственных нейронных сетей производилось с использованием многокритериального генетического алгоритма FFGA. This article presents mathematical models based on artificial neural networks used to control induction soldering. The artificial neural networks were trained using the FFGA multicriteria genetic algorithm. The developed models allow to control induction soldering under conditions of incomplete or unreliable information, as well as under conditions of complete absence of information about the technological process.


Sign in / Sign up

Export Citation Format

Share Document